80

Conversations: Part One

Conversations: Part One, fait ses débuts. Ceci est le premier des six «conversations» sur la théorie de l'espace quantique (TVQ). Dans cet épisode, Thad Roberts survole la théorie quantique de l'espace, nous montrant comment visualiser les dimensions onze. Aucune autre théorie (de la théorie des supercordes, M-théorie, la supergravité, etc.) a été en mesure d'offrir à l'humanité une telle fenêtre vive dans la structure dimensionnelle complète de la nature. Cette approche intuitive apporte une nouvelle ampleur à l'imagination humaine et offre une nouvelle vision intellectuelle fascinante qui a le potentiel de changer le monde en changeant la façon dont nous le voyons. La capacité à comprendre et à saisir intuitivement dimensions onze prépare le terrain pour répondre aux plus grands mystères de la physique.

Commentaires (80)

Trackback URL | Commentaires Flux RSS

  1. Nunya Bizness dit:

    Rien de ce que vous dites est vrai. Je ne vais pas prendre le temps de réfuter tout de cette vidéo, mais laissez-moi vous dire ceci:

    Relativité Générale ne sont pas «mauvais», dans le sens que vous réclamez. Il est faux dans le sens où une théorie plus précise viendra un jour long. Mais il est de loin la théorie la plus précise de la gravité qui n'a jamais été mis en avant.

    Je vais vous expliquer pour vous comment cela fonctionne, parce que de toute évidence vous ne comprenez pas.

    Relativité Générale (GR) reprend là où la Relativité Restreinte laisse hors; à savoir: l'idée que l'espace et le temps sont une entité inséparable appelé l'espace-temps. Une question évidente est: «quelle est la géométrie de l'espace-temps?" Vous pourriez supposer que l'espace-temps est euclidienne. Vous auriez tort.

    Les fondements mathématiques de base de GR est la géométrie différentielle, qui est l'application du calcul multidimensionnel à des objets géométriques. Via la géométrie différentielle, tous les concepts de la géométrie de l'espace peuvent être déduites d'un objet mathématique, connu sous le nom de la métrique. La métrique est un tenseur qui peut être utilisé pour calculer la distance entre deux points dans l'espace. Ainsi, la métrique caractérise entièrement la géométrie d'un espace. La métrique euclidienne de n-space est une matrice nxn dont les entrées sont tous nuls, sauf pour la diagonale, où les entrées sont tous 1. Si vous utilisez ce pour générer la distance entre deux points dans l'espace, vous serez renvoyé le pythagoricien familier théorème: a ^ 2 + b ^ 2 = c ^ 2 (notez que ceci est la version 2 dimensions du théorème; elle peut être généralisée de manière évidente à toute dimension de l'espace euclidien).

    Spacetime est, dans une très bonne approximation, euclidienne. Mais pour être plus précis, il est pas. Cela devient particulièrement apparente à de très grandes distances, à de très grandes vitesses, ou dans des champs gravitationnels très élevés. La métrique de l'espace-temps est identique à la métrique euclidienne, à l'exception que l'entrée de diagonale dans la colonne de temps a le signe opposé par rapport au reste des éléments diagonaux.

    Quel est l'effet de cette situation? Eh bien, un théorème familiers de la géométrie euclidienne est que la distance la plus courte entre deux points est la ligne droite. Dans l'espace-temps, est pas ainsi. En raison de résultats de base de la relativité restreinte que je ne vais pas tirer ici (lire tous les manuels de la relativité restreinte de premier cycle), la quantité de temps mesurée par un observateur dépend du chemin qu'il parcourt l'espace-temps. Ceci est appelé le bon moment. En raison de la nature non-euclidienne de l'espace-temps, la distance la plus courte entre deux points est en fait ce qui minimise le temps approprié. En d'autres termes, passer comme un éclair vers le bord de la galaxie à la vitesse de la lumière et de revenir ensuite, il faudra moins de temps pour vous dans votre vaisseau spatial que ce serait pour moi d'attendre pendant que vous allez sur votre chemin. Ceci est le fameux paradoxe des jumeaux.

    Quoi qu'il en soit, le résultat de ceci est que, par le principe de variation (qui devrait vous être familier si vous avez été exposé à la mécanique de Lagrange, que je soupçonne que vous ne l'avez pas ...), dans l'espace-temps objets ont tendance à voyager par le chemin qui minimise leur temps approprié. Comme mentionné précédemment, un temps suffisant est raccourcie de Voyage à grande vitesse, ou d'être dans un champ gravitationnel.

    Prenez maintenant, à titre d'exemple, une pomme sur un arbre. La pomme va essayer de minimiser son temps. Il le fera en se déplaçant vers un champ gravitationnel - à savoir, la Terre. Il en résulte une force d'attraction entre la pomme et de la planète. En d'autres termes, l'avenir des points de worldlike de la pomme vers le centre de la Terre.

    Voilà comment fonctionne la gravité, en un mot. Le fait que vous ne savez pas ce évite votre incompétence à tente de travailler dans ce domaine. Mais il est votre propre temps à perdre, je suppose ...

    • Geo dit:

      Alors, permettez-moi obtenir ce droit ... La pomme va essayer de minimiser son temps en se déplaçant vers un champ gravitationnel et voilà ce qu'est la gravité (dans un fort sentiment ontologique). Pourquoi la pomme ne cherche à minimiser son temps? Qu'est-ce qu'un champ gravitationnel? Quelle est la gravité? Votre commentaire n'a pas vraiment répondu à aucune de ces questions ou même aidé à clarifier. Tout ce que vous avez fait est stipulent un champ magique qui attire les pommes.

      • chandan Srivastava dit:

        le plus court distence peut être mesure par le calcul de la variation.

        • Thad Roberts dit:

          Vous avez raison de dire que la plus courte distance peut être mesurée en utilisant un calcul des variations, aussi longtemps que la métrique nous parlons est lisse et connecté. Dans une métrique quantifié la question peut être un peu plus compliqué.

          • "Dans une métrique quantifié la question peut être un peu plus compliqué." - Thad Roberts.

            Voilà pourquoi une complication supplémentaire applique à granularité quantique car il applique à tous les objets. Tous les objets sont percepts, y compris les concepts. Tous réalité existentielle (de conscience) est phénoménologique ou narrative. L'erreur est non seulement conceptualisation du surnaturel. Il est encore plus aiguë de la supernarrative perceptualization. En d'autres termes, l'évocation des dieux mystiques, et l'invocation des personnes comme des objets animés volitionnelles discrètes se tiennent dans construction mutuelle.

            Comme pour le calcul différentiel. Il ne commence pas trop aborder la question de l'existence. Il est mais un autre récit rides amusant.

      • Peter Martin dit:

        "Quelle est la gravité?» «Qu'est-ce qu'un champ gravitationnel?" Ce sont des pseudo "est" des questions qui, par leur nature, ne peut jamais être répondu.

        Vous pouvez profiter de la lecture de la Société pour Ganeral Sémantique dirigés par Alfred Korzybski, qui a évité les déclarations et les questions dont (ou seulement) verbe principal est une forme de «être».

    • Jon dit:

      Pour Nunya: tout ce que vous dites est très bien, mais vous n'a pas expliqué une chose: ce qui est un champ gravitationnel? La relativité générale explique les effets de la gravité, mais il ne précise toujours pas vraiment ce qu'est la gravité. Comme il le dit dans la vidéo, nous avons eu à assumer que la gravité est une force. Mais si elle est, pourquoi il est si incroyablement faible en comparaison avec les autres forces? Relativité est une grande théorie de grandes choses, mais il explique rien à l'échelle subatomique. Au moins cette théorie donne les mêmes règles pour l'ensemble de l'univers à toutes les échelles. Et il donne une bonne explication de ce que le temps est.

  2. Nunya Bizness dit:

    Il est le principe d'inertie: un objet se rendra dans une ligne droite à moins sollicité par une force. La définition d'une "ligne droite" est le chemin qui minimise la distance.

    Le nœud du GR est que l'espace est pas plat, et que la gravité est la manifestation de l'espace-temps déformé. Ce gauchissement provoque des lignes droites (celles qui minimisent bon moment) à arc vers des morceaux de masse - en d'autres mots, les objets attirent un de l'autre.

    Relativité générale est une théorie très complexe. Qu'est-ce que je l'ai écrit est ridiculement courte introduction à crash-il. Au lieu de simplement être sceptique à propos de tout et rejetant de la main, pourquoi ne pas vraiment lire un manuel sur la relativité? Il est difficile de prétendre que vous avez réfuté la relativité sans même comprendre le premier ...

    • Geo dit:

      Tout d'abord, je (et je ne suis pas Thad, donc je ne parle pas pour lui) ne suis pas sceptique de GR. Il a prouvé lui-même autant que toute théorie peut. En fait, je pense que, à côté de l'ancienne théorie atomique grec, il est le plus important théorique (physique) l'humanité percée a jamais fait. Cela dit, je ne pense pas qu'il est complet et n'a Einstein lui-même. Ce que je ne pense pas que vous compreniez que la TVQ est une extension de gr. Il est à bien des égards, la quantification de GR (du continu à un système discret). Vous semblez penser que nous sommes Trashing GR. Nous ne sommes pas. Thad n'a pas nommé son livre «L'intuition d'Einstein" par dépit, mais plutôt par respect. Si vous aviez pris la peine d'écouter ce qui a été dit dans la vidéo que vous avez recueilli que vous-même.

      Deuxièmement, la TVQ pose la même idée, que la gravité est la manifestation de l'espace-temps déformé. Mais TVQ donne un mécanisme concret pour que la déformation. La gravité est, littéralement, un changement dans la densité de l'espace (un gradient de densité). Je ne pense pas que cela jette GR par la fenêtre. Au contraire, il se tient sur les épaules de deux grands Einstein et ses théories.

      Si vous aimeriez avoir, un dialogue productif critique à ce sujet, et je Thad sont plus que disposés à le faire. Votre antagonisme et de fausses déclarations de TVQ, ne sont cependant pas d'intérêt pour nous.

      À votre santé,

      Jeff (Site Admin)

      • Nunya Bizness dit:

        Mon point est pas que vous êtes Bashing GR. Il est ce que vous comprenez mal, et par conséquent, les conclusions que vous tirez sont incorrects.

        Par exemple, Thad dit dans la vidéo que le "trampoline" schéma communément vu de GR est incorrecte parce qu'elle néglige un axe de l'espace, et que nous en quelque sorte besoin de plusieurs dimensions d'espace pour "étirer" lors des GR de travailler. Bien sûr, ce schéma est mauvais - il est juste une métaphore. Il est seulement utilisé pour introduire le concept de laïcs qui, naturellement, ont un moment difficile aux prises avec une variété pseudo-riemannienne 4 dimensions. De penser que ce modèle simple encapsule la théorie est une erreur. L'espace peut se déformer sans se déformer dans une autre dimension.

        Il ya d'autres questions innombrables qui ne cadrent pas avec les mathématiques et la physique établies, comme l'idée que pi représente une quantité de courbure (et que cela est le montant minimum de courbure). Pi est un rapport; courbure est mesurée par dérivées partielles directionnelles.

        Je ne vous dis pas d'arrêter ce que vous faites. Je vous le dis, comme quelqu'un qui a une formation en mathématiques et en physique, que si vous êtes intéressé à ces choses, vous êtes sur la mauvaise voie, et il ne va pas vous emmener partout significative. Je suis désolé si cela dure, mais la différence entre le vrai et le faux est très forte. Qui est pourquoi je vous supplie et Thad pour étudier la physique établies comme la relativité en profondeur (par exemple, mathématiquement) avant de tenter de les améliorer.

        • Geo dit:

          Je comprends ce que vous dites. Je ne suis pas un mathématicien ou un physicien, mais plutôt un intérêt (et probablement plus instruits) laïc. Cependant, il ya plusieurs mathématiciens et physiciens théoriques de travail sur la formalisation de la TVQ dès maintenant avec Thad. Ils semblent penser qu'il ya quelque chose à elle. Ces gens sont familiers avec les théories et les mathématiques dont vous parlez dans vos commentaires. Ils ont fait plus que de lire les textes d'introduction que vous suggérez. Ne pas être un expert, je dois remettre à eux. Cela dit, aucun d'entre eux ont jeté leurs mains et est reparti après plusieurs mois de travail, plutôt ils sont devenus plus convaincus. Ils se sentent encore il ya quelque chose à gagner scientifiquement par leurs efforts.

          D'un point de vue laïque, offres TVQ (du moins pour moi) une explication pour une foule de phénomènes disparates (à la fois macroscopique et microscopique) qui résistent explication à ce jour. Un des points de Thad est qu'une théorie qui ne fournit pas une explication, est pas beaucoup d'une théorie (ce qui serait un coup à l'interprétation standard de la mécanique quantique dont il mérite amplement). Je comprends que, jusqu'à une formalisation complète est terminée plus de la communauté scientifique ne donnera pas la TVQ le moment de la journée (et beaucoup ne seront pas même lorsque que la formalisation est complète). Mais à ce point, la théorie est toujours vérifiable dans le laboratoire de la logique. Trouvez une faute avec sa logique, ses locaux, ses conclusions. Voilà où nous en sommes maintenant. Jusqu'à présent, à ma connaissance, personne n'a réfuté aucune de ces résumés théoriques de la TVQ.

          Manifestement, il ya encore beaucoup de travail à faire, mais je crois que (oui, il est une croyance) qu'une solide fondation a déjà été construit. Comme ils le disent, le diable est dans les détails, et ces détails sont en cours d'élaboration. Les documents seront rédigés. Les pairs examineront.

          Je vous invite à lire le livre en entier (qui nous pouvons envoyer via PDF si vous le souhaitez).

        • Jon dit:

          Nunya, où avez-vous été l'homme? Tous les nouveaux révolutionnaires physique étant effectuées suppose qu'il ya des dimensions spatiales supplémentaires. Si vous êtes sûr que la GR est être tout fin tout, puis expliquer tunnel quantique. Expliquez principe d'incertitude. Il ne peut pas y toucher. Einstein lui-même ne croyait pas que les trous noirs ont vraiment existé. Nous avons maintenant la preuve qu'il ya des millions partout. GR totalement décompose au centre d'un trou noir. Nous ne pouvons pas aller de l'avant si nous ne sommes pas prêts à envisager la possibilité de dimensions supplémentaires. Obtenez avec le programme.

        • G-boulon dit:

          Vous avez décrit explications mathématiques de forces. Vous avez expliqué comment ils se comportent, sans la moindre idée pourquoi.

          Le modèle d'espace déformé est le modèle d'un profane, vous pouvez perdre ce que vous acceptez l'hypothèse que l'espace peut être courbé d'une manière que nous ne pouvons pas percevoir.

          Le problème est que, par définition, pour quelque chose de la courbe (ou pour modifier les propriétés, il n'y a aucune différence) d'une manière qui est imperceptible à nous il doit se déplacer dans une autre dimension. Modification de toute propriété est changeant une «dimension».

          Imaginer ces dimensions en termes physiques est tout simplement leurs interactions plus faciles à comprendre ou du moins accorde une nouvelle perspective.

  3. Jean dit:

    Je pense que (Nunya Bizness) a complètement manqué le message ici. Vous êtes les bienvenus à votre avis, mais après avoir lu sur vos commentaires il me semble que vous avez trompé les revendications de la théorie quantique de l'espace. Je sais que la formulation est pas encore terminée, mais les principes fondamentaux ont cohérence.

    Je suis intéressé par votre affirmation selon laquelle "l'espace peut se déformer sans se déformer dans une autre dimension."

    Je trouve aucun motif sérieux de cette affirmation. Laisse-moi expliquer. Pour dire que l'espace peut se déformer sans se déformer dans d'autres dimensions est de dire que vous avez un mécanisme, une explication, pour savoir comment l'espace peut se déformer - pas simplement une description de la façon dont l'espace est déformé autour des objets massifs. Alors qu'il pourrait se révéler être le cas qu'il existe d'autres moyens pour l'espace de chaîne (autres que la déformation dans d'autres dimensions), une telle demande ne peut être confirmée jusqu'à une sorte d'exemple est mis en avant. Vous ne pouvez pas simplement dire, regardez, l'espace est déformé parce que nous avons donné l'espace d'une métrique qui lui donne la qualité d'être déformé. Inventer une représentation de qualité est entièrement différente de expliquant que la qualité. Comme il est en ce moment (dans les manuels modernes) le sens même de "espace déformé" est inaccessible. Bien sûr, vous pouvez utiliser les mathématiques pour la représenter, l'imiter, copier, ou autre, mais que les mathématiques ne signifie pas nécessairement que vous avez une explication à son origine. Exactement comment fonctionne l'espace-temps chaîne sans se déformer dans une autre dimension (s)? Voilà la question centrale à portée de main. La théorie de l'espace quantique dit qu'il ne peut pas, mais il ne pousse pas l'espace-temps déformé hors de l'image, à la place, il clarifie la façon dont la chaîne vient à propos - revendiquant Einstein d'une manière qui serait beaucoup lui plaire.

    Je l'ai lu un peu plus que les manuels dont vous parlez. Je l'ai pris les classes (à la fois en mathématiques et physique) et ensuite allé plus loin. Si vous avez fait la même chose alors je suis sûr que vous serez d'accord que dans ces livres qu'ils obtiennent simplement les gens à avaler "tripes, plumes, et tout" l'idée que nous pouvons inventer un champ de nulle part tant que les rendements sur le terrain résultats qui correspondent à l'observation. Le champ gravitationnel est supposé donner de l'espace une caractéristique supplémentaire qui est mappable par un tenseur. Le problème est, et a toujours été, que le simple invention de ce champ ne nous donne pas une explication de la façon dont ce domaine embarrasse l'espace-temps, ce qui la fait venir à l'existence, ou de ce qu'il est vraiment. Il est tout simplement considérée comme brutale qu'elle existe en association avec la masse, sans aucune raison nécessaire. La logique ici besoin d'un peu d'amélioration. Il doit aussi un peu plus d'honnêteté. Einstein était bien conscient de cela (trouver cette explication était le projet qui a occupé ses 30 dernières années). Il est vrai que si vous avalez tout simplement l'existence de ce champ que vous conviendrez que voies droites deviennent les chemins d'orbites, mais la théorie quantique de l'espace ne conteste pas cela - il tente de l'expliquer. La théorie demande tout simplement une autre question, plus fondamentale que vous lui donnez le crédit pour. Il se demande pourquoi et comment cette chaîne se produit?

    Les scientifiques ne doit pas être simplement pour apprendre une association, nous devons être à la recherche d'un lien de causalité, une explication. Il ya une différence assez importante entre les associations et les explications, tout à fait une différence importante entre avoir une représentation mathématique d'un système et une explication complète métaphysique pour ce système. Voilà pourquoi je, et un nombre croissant de scientifiques, sont intéressés à cela et, au moins dans mon cas, sont en consacrant un peu de temps chaque semaine pour le développer.

    • Nunya Bizness dit:

      "Je sais que la formulation est pas encore terminée, mais les principes fondamentaux ont cohérence."

      Ils ne font pas. Par exemple: l'image que Thad utilise dans la vidéo ci-dessus, avec les "bulles" à propos de rebondir est pas 11 dimensions du tout. Il est tridimensionnel. Les «bulles» se déplacent en trois dimensions, et Thad affirme qu'il ya trois dimensions à l'intérieur de la bulle. Il n'y a rien séparant l'intérieur et l'extérieur de la bulle autre que le mur de la bulle, il n'y a donc aucune raison de les considérer comme des sphères séparées.

      Toutes les dimensions d'un espace donné sont perpendiculaires les uns aux autres (ce qui est un résultat très bien connu de l'algèbre linéaire). Si vous voulez d'imaginer l'espace à 11 dimensions, il faut imaginer 11 lignes qui sont tous perpendiculaires l'une à l'autre. Vous ne pouvez pas. Moi non plus Il est impossible, et notre incapacité à imaginer qu'il n'a absolument rien à voir avec la physique.

      "Je suis intéressé par votre affirmation selon laquelle" l'espace peut se déformer sans se déformer dans une autre dimension ".
      Je trouve aucun motif sérieux de cette demande. "

      Cela ne veut pas d'une réclamation. Il est une vérité mathématique qui est extrêmement évidente, même dans la vie réelle. Prenons, par exemple, une bande de caoutchouc. Imaginez que vous vivez sur la surface de cette bande. Si je l'étire, vous serez témoin de l'espace autour de vous se déformer. La distance entre vous et les objets à proximité va augmenter. Ceci est similaire à ce qui se passe dans l'espace-temps. Dimensions étendent dans leur propre direction.

      "Laisse-moi expliquer. Pour dire que l'espace peut se déformer sans se déformer dans d'autres dimensions est de dire que vous avez un mécanisme, une explication, pour savoir comment l'espace peut se déformer - pas simplement une description de la façon dont l'espace est déformé autour des objets massifs ".

      Non, ce ne suit pas logiquement. Pour dire que l'espace peut se déformer sans avoir besoin d'autres dimensions est une déclaration qui se dresse sur son propre. Il est une déclaration géométrique. L'essence de cette déclaration, mathématiquement, est que les dimensions sont linéairement indépendants. Il ne dit rien au sujet d'un «mécanisme».

      En tout cas, GR ne pose un «mécanisme». A savoir, la matière déforme l'espace-temps. Période. Regardez le champ d'équations d'Einstein. Littéralement, le stress en énergie = espace-temps courbure. Peut-être il ya une explication plus profonde. Et ce sera un objet d'étude de la prochaine théorie de la gravité. Mais le simple fait est, GR est logique, il a été extrêmement (!) Vilipendé par l'expérience, et il fournit une vue éclairant de gravité (la déformation de l'espace-temps).

      "Le sens même de" espace déformé "est inaccessible"

      Un problème que les défenseurs de la TVQ semblent avoir est qu'ils pensent tous de la physique devrait être réductible à "photos" simples que tout profane peut comprendre. Ce serait bien si cela était possible, mais il est pas. Physique (en particulier au niveau de la TVQ essaie de fonctionner) est extrêmement complexe, et il n'y a pas moyen de contourner cela. Voilà pourquoi les gens comme Einstein sont considérés comme des génies; pas seulement un schmuck peut le comprendre. Ainsi, afin d'aider plus de gens à comprendre, les scientifiques simplifient souvent et d'annuler leurs théories dans les idées très basiques et les métaphores (comme le modèle de trampoline de la relativité). Le problème est, beaucoup de gens se confondre cette métaphore de la théorie actuelle. Ils remarquerez que le modèle est imparfait, et tout à coup ils pensent qu'ils ont fait la découverte du siècle. Mais le modèle est conçu pour être imparfait; ces failles permettent au modèle d'être assez simple à comprendre.

      "Exactement comment fonctionne l'espace-temps chaîne sans se déformer dans une autre dimension (s)? Voilà la question centrale à portée de main. La théorie de l'espace quantique dit qu'il ne peut pas, mais il ne pousse pas l'espace-temps déformé hors de l'image, à la place, il clarifie la façon dont la chaîne vient à propos -. Revendiquer Einstein d'une manière qui serait beaucoup lui plaire "

      Tout d'abord, vous ne pouvez pas parler pour Einstein; il est mort depuis longtemps. Deuxièmement, si la TVQ affirme que l'espace-temps exige des dimensions supplémentaires afin d'être déformé, puis la TVQ rompt la relativité. Fin de l'histoire. Relativité dépend fondamentalement sur le fait que l'espace-temps peut faire cela. Et GR est essentiellement correcte. So if any theory violates this idea (or any other that invalidates GR entirely) that theory must be false. There's no two ways about it.

      “you'll agree that in those books they simply get people to swallow “guts, feathers, and all” the idea that we can invent a field out of nowhere as long as that field yields results that match observation.”

      There is a philosophical issue here. You are correct to say that there is a difference between predicting a phenomenon and actually explaining it. A good theory must do both. But you must understand two things: 1) science is a process. The original theory of gravity (Newton's) offered no explanation at all. But it was excellent at predicting. Relativity improved the prediction, and offered an explanation (curved geometry). You may complain that the explanation does not go far enough, but that does not mean it is not an explanation. The next theory of gravity will surely hold more insight. And 2), the explanations given by a theory are not always simple. Einstein *did* explain gravity, at least to an extent. But that explanation (when given in full) requires the use of 4 dimensions – something we're not used to. The only way to make it seem simple is to strip away some of the complexity, and speak metaphorically about a bowling ball on a trampoline.

      “The gravitational field is assumed to give space some additional characteristic which is mappable by a tensor. The problem is, and always has been, that the simple invention of this field does not give us an explanation for how that field entangles with spacetime, what causes it to come into existence, or what it really is.”

      Most of this doesn't even make sense. Gravity doesn't entangle with spacetime; it does not give spacetime some weird characteristic. Gravity is the curvature of space, no more, no less. It can be regarded as a field, which Newton did; but Relativity says it is geometry, and it is much more accurate. Relativity says that this curvature is caused by mass. If there is anything deeper going on here (which there may not be!), some future theory will uncover it.

      The larger issue here is the meaning of existence. The way science works is by postulating a theory of a phenomenon; an explanation. That explanation must be good enough to give a prediction (in modern times this means math). The given explanation may postulate the existence of things beyond what is presently observed (or is possible to observe). If the theory is coherent, gives accurate predictions, and is as simple as possible (Occam's Razor), it may be regarded on some level as being true.

      For the example of the gravitational field, Relativity: gravity is curvature of spacetime. This is calculated with the Ricci tensor, and highly accurate predictions are made. Virtually every prediction of GR has been verified to experimental limit – and this includes, most importantly, the direct measurement of spacetime curvature!

      On the other hand, QST: self-contradictory and incoherent explanation of various phenomena. No mathematical predictions at all. (Pi is not a measurement of curvature!) No experimental predictions, no experimental tests. It fails on every count. There is nothing here.

      • Geo dit:

        I'll respond to each section individually (if I'm missing something, John, please comment yourself):

        “I know the formultion is not yet complete, but the foundational principles do have coherence.”

        They do not. For example: the picture that Thad uses in the above video, with the “bubbles” bouncing about is not 11 dimensional at all. It is three dimensional. The “bubbles” are moving in three dimensions, and Thad claims that there are three dimensions inside the bubble. There is nothing separating the inside and the outside of the bubble other than the bubble's wall, so there is no reason to regard them as separate realms.

        If you take the original axiom seriously then this picture does represent 9 dimensions of space. Quantization institutes the very restriction that you are ignoring, so your complaint begs the question.

        All the dimensions of a given space are perpendicular to one another (this is a very well-known result of linear algebra). If you want to imagine 11-dimensional space, you have to imagine 11 lines that are all perpendicular to one another. You can't. Neither can I. It's impossible, and our failure to picture it has absolutely nothing to do with physics.

        Technically, “perpendicular” is an oversimplification used in elementary geometry. The correct term is orthogonal. Two elements of an inner product space fit the definition of orthogonal if their inner product is zero. Two subspaces can be called independent dimensions if they are orthogonal, and they are orthogonal if every element of one is orthogonal to every element of the other. To put it simply, if motion in one does not entail motion in the other then they are orthogonal subspaces. Your assertion that it is impossible to imagine more than 3 space dimensions is something that we definitely disagree on. You are entitled to remain with your current opinion. (Thanks to my mathematician friend for help here…)

        “I am interested in your claim that “space can warp without warping into another dimension.” I find no substantial grounds for this claim.”

        This is not a claim. It's a mathematical truth that is extremely obvious, even in real life. Take, for example, a rubber band. Imagine you live on the surface of that band. If I stretch it, you will witness the space around you warping. The distance between you and nearby objects will increase. This is similar to what happens in spacetime. Dimensions stretch in their own direction.

        Ok, let's take your example seriously. Imagine that we all live on the surface of a that band, except for you of course because you are stretching it. As you stretch it and we observe the rest of the universe that we are aware of, which is also contained by the band, what will we see? Rien. Exactly nothing. We are stretching in exact proportion with the rest of the universe so everything appears to be identical at all points to us whether or not you stretch it. The only way out of this conclusion is to imagine that you, as the observer, somehow live outside of the space that is stretching instead of being within it. At any rate, you haven't addressed the concern.

        “Let me explain. To say that space can warp without warping into other dimensions is to say that you have a mechanism, an explanation, for how space might warp – not merely a description for how space is warped around massive objects.”

        No. This does not follow logically. To say that space can warp without needing other dimensions is a statement that stands on its own. It is a geometrical statement. The essence of that statement, mathematically, is that dimensions are linearly independent. It says nothing about a “mechanism.”

        Linearly independent makes no play here. All dimensions, by definition, are orthogonal whether or not curvature is a part of the description. You say that “it can warp without needing other dimensions” then simply explain how. You are asserting that it is possible, that there is some way for this to occur, that it is at least feasible, so provide something to validates this.

        At any rate, GR does posit a “mechanism.” Namely, matter warps spacetime. Période. Look at the Einstein Field Equation. Literally, stress-energy = spacetime curvature. Perhaps there is a deeper explanation. And that will be an object of study of the next theory of gravity. But the simple fact is, GR makes sense, it has been extremely(!) vilified [sic] by experiment, and it provides an enlightening view of gravity (the warping of spacetime).

        This is a study of the next theory of gravity. What do you think we've been talking about all of this time? Of course general relativity makes sense! It's almost correct too. Of course it has been extremely verified by experiment. Nowhere have we ever contested this. In fact, our interest in general relativity and developing a way to make it account for the effects of quantum mechanics has been the motivation all along. I don't know how you got the idea that QST is pitted against general relativity. It simply isn't the case. We are on the quest to vindicate general relativity the rest of the way, to find its fundamental ontological explanation and to show how the geometry that gives rise to the beautiful effects of general relativity can also be linked to the effects of quantum mechanics.

        “the very meaning of “warped space” is inaccessible”

        A problem that QST advocates seem to have is that they think all of physics should be reducible to simple “pictures” that any layman can understand. It would be nice if that were possible, but it's not. Physics (especially at the level QST tries to function) is extremely complex, and there's no way of getting around that. That's why people like Einstein are regarded as geniuses; not just any schmuck can understand it. So, in order to help more people understand, scientists frequently simplify and quash their theories into very basic ideas and metaphors (like the trampoline model of relativity). The problem is, many people will mistake this metaphor for the actual theory. They'll notice that the model is flawed, and suddenly they think they've made the discovery of the century. But the model is designed to be flawed; those flaws allow the model to be simple enough to understand.

        You will have to allow all of us QST advocates to firmly disagree with you here. We continue to support Einstein on this one.

        “It should be possible to explain the laws of physics to a barmaid.” – Albert Einstein

        “Exactly how does space time warp without warping into another dimension(s)? That's the central question at hand. Quantum space theory says that it can't, but it doesn't push warped space time out of the picture, instead it clarifies how the warp comes about – vindicating Einstein in a way that would very much please him.”

        First of all, you cannot speak for Einstein; he is long dead. Second, if QST claims that spacetime requires additional dimensions in order to be warped, then QST breaks Relativity. Fin de l'histoire. Relativity depends fundamentally on the fact that spacetime can do this. And GR is mostly correct. So if any theory violates this idea (or any other that invalidates GR entirely) that theory must be false. There's no two ways about it.

        Of course QST breaks with relativity, but only on the microscopic scale, where every future theory of gravity must break with it if it has any hope of being right. General relativity IS mostly correct. Why are you still trying to comment on this as if we disagree? Any complete theory of gravity must disagree with general relativity on the small scales and agree with is on the large scales. Aussi simple que cela. Einstein knew this, no way around it, so I'm not sure how your complaint is supposed to be directed.

        “you'll agree that in those books they simply get people to swallow “guts, feathers, and all” the idea that we can invent a field out of nowhere as long as that field yields results that match observation.”

        There is a philosophical issue here. You are correct to say that there is a difference between predicting a phenomenon and actually explaining it. A good theory must do both. But you must understand two things: 1) science is a process. The original theory of gravity (Newton's) offered no explanation at all. But it was excellent at predicting. Relativity improved the prediction, and offered an explanation (curved geometry).

        We could not agree more.

        You may complain that the explanation does not go far enough, but that does not mean it is not an explanation. The next theory of gravity will surely hold more insight.

        And exactly what do you think we are doing here. This is our point. This is why we are working on this.

        And 2), the explanations given by a theory are not always simple.

        Vous avez raison. They are only simple when they are complete and correct.

        Einstein *did* explain gravity, at least to an extent. But that explanation (when given in full) requires the use of 4 dimensions – something we're not used to. The only way to make it seem simple is to strip away some of the complexity, and speak metaphorically about a bowling ball on a trampoline.

        Seeing it for what it is instead of only partially explaining it can make it simple too. Of course the trampoline is only intended as a metaphor. Of course Einstein would have gone with something better if he had succeeded in finding it. Are you trying to argue that because Einstein is dead no one should continue pushing for a more complete explanation?

        “The gravitational field is assumed to give space some additional characteristic which is mappable by a tensor. The problem is, and always has been, that the simple invention of this field does not give us an explanation for how that field entangles with spacetime, what causes it to come into existence, or what it really is.”

        Most of this doesn't even make sense. Gravity doesn't entangle with spacetime; it does not give spacetime some weird characteristic.

        Curvature is a characteristic.

        Gravity is the curvature of space, no more, no less. It can be regarded as a field, which Newton did; but Relativity says it is geometry, and it is much more accurate. Relativity says that this curvature is caused by mass. If there is anything deeper going on here (which there may not be!), some future theory will uncover it.

        The larger issue here is the meaning of existence. The way science works is by postulating a theory of a phenomenon; an explanation. That explanation must be good enough to give a prediction (in modern times this means math). The given explanation may postulate the existence of things beyond what is presently observed (or is possible to observe). If the theory is coherent, gives accurate predictions, and is as simple as possible (Occam's Razor), it may be regarded on some level as being true.

        Exactement. Feel free to direct yourself to the general predictions that stem from this geometry. If your attack is that there are no “exact” predictions yet, due to the fact that we haven't finished the full mathematical formulation of the geometry, then you hardly have any business telling us to stop working on the math of the theory.

        For the example of the gravitational field, Relativity: gravity is curvature of spacetime. This is calculated with the Ricci tensor, and highly accurate predictions are made. Virtually every prediction of GR has been verified to experimental limit – and this includes, most importantly, the direct measurement of spacetime curvature!

        Of course it has. It is abundantly clear that you are entirely confused about the claims and goals of this new theory. You are determined to pit it against general relativity instead of seeing it as an ontological validation and supporter of general relativity.

        On the other hand, QST: self-contradictory and incoherent explanation of various phenomena. No mathematical predictions at all. (Pi is not a measurement of curvature!) No experimental predictions, no experimental tests. It fails on every count. There is nothing here.

        Yes, pi can easily be used as a measurement of curvature. Go back and check your math. The ratio of a circle's circumference to its diameter will change when you put it in a space with the Ricci tensor. Uninformed assertions are not questions. If you have questions feel free to ask. If your agenda is simply to push your conviction that a theory that you won't hear out must be wrong, because you've already decided before reading it that it conflicts with general relativity in a way that it shouldn't, then this is really not the place for those kinds of rants.

        Thanks for you questions. We shall continue our calculations and work (despite your suggestion that an already complete mathematical formulation is the only kind anyone should work on).

      • Jim dit:

        If dimensions stretch in their own direction, how would one know they stretched?

        • Thad Roberts dit:

          I'm not sure it means much to say that a dimension stretches in its own direction. To define “stretching” in a meaningful way we need to reference a property that changes in reference to another dimension. If you are pointing out that if the universe of x, y, z space has been stretching/expanding, in the way often visually modeled on a balloon to explain the redshift we measure and connect to dark energy, then you are right to point out that this popular model actually doesn't provide a coherent explanation of stretching. If, on the other hand, one region of space “stretched” more or less than another, it would leave geometric distortions (curvature) that could be detected.

  4. Moi me dit:

    Rather than writing a lengthy response, allow me to just point out a number of falsehoods I have seen involved with QST, and ask how they are to be resolved.

    Pi represents the smallest amount of curvature possible in spacetime. (Russian character) represents the greatest amount.

    QST is 11 dimensions even though real space is 3 dimensions, the inside of the “bubbles” is 3 dimensions, and the space the “bubbles” move through is 3 dimensions, and there is nothing separating those regions from one another.

    Un quantum de quelque chose est la plus petite unité possible de cette chose. Un quantum de l'espace est une «bulle» au-delà duquel il n'y a pas de définition de l'espace. Pourtant, il ya un espace à l'intérieur des bulles, en quelque sorte.

    La gravité est représenté par le gradient de densité de l'espace quanta. Mais la gravité est causée par la matière. La matière est pas d'espace. Comment ce même sens?

    Le temps est la résonance de l'espace quanta. Pourquoi? Comment? Qu'est-ce raisonnement conduit à cette conclusion?

    Si il ya 11 dimensions, pourquoi ne pouvons-nous les voir? String Theory dit les extra sont recroquevillés extrêmement faible. TVQ semble avoir des dimensions supplémentaires juste une sorte de ... là-bas ... flottante

    • Geo dit:

      Permettez-moi de répondre à ces questions mieux que je peux, un par un:

      "Pi représente la plus petite quantité de courbure de l'espace-temps possible. (Caractère russe) représente la plus grande quantité. "

      [Le caractère russe est "Zhe"]

      Dans la relativité générale le rapport de la circonférence au diamètre va de zéro à chaque fois que les trous noirs sont dans la région dont la courbure est décrite (parce que le dénominateur, le diamètre du cercle centré sur un trou noir, tend vers l'infini si l'espace-temps est trous continus et noir sont nuls taille). La mécanique quantique a un problème avec ce que l'infini dans le dénominateur. Il entre en conflit avec la relativité générale sur ce point et coupe ce débordement avec son allégation selon laquelle la plus petite distance dans l'espace est la longueur de Planck. Qst d'accord avec cette affirmation et sa géométrie nous offre un moyen de déterminer quantitativement l'expression de la courbure maximale qui est institué par ce coupé. Pourquoi est-ce intéressant? Il est intéressant parce que, si elle est juste, alors cela signifie qu'il ya deux nombres sans dimension inhérents à la carte géométrique de l'espace-temps, combinées avec les cinq valeurs de Planck qui résultent de la quantification. Ceci nous amène à quelque chose d'encore plus intéressant ... Quelle que soit cette autre numéro géométrique est, sa valeur doit être compris entre zéro et pi. Rétrécissant vers le bas plus il ya de forte attente qu'il est compris entre 0 et 0,7. Ainsi, la demande de ce modèle géométrique est qu'il ya un certain nombre entre 0 et 0,7 que, peuvent être combinés pour les 5 paramètres de Planck, et pi, à nonarbitrarily produire ou "encoder" les effets géométriques qui sont inhérentes à l'espace-temps - les constantes de Nature. Comme il se trouve il ya un tel nombre, et il arrive de tomber dans cette gamme. (Voir les constantes de la page Nature sur ce site.) Ceci est suffisamment importante pour justifier les efforts actuels pour tirer théoriquement la valeur exacte de ce nombre de considérations géométriques.

      «TVQ est de 11 dimensions, même si l'espace réel est de 3 dimensions, l'intérieur des" bulles "est 3 dimensions, et l'espace de la« bulles »se déplacer à travers est 3 dimensions, et il n'y a rien qui sépare les régions les unes des autres.

      Un quantum de quelque chose est la plus petite unité possible de cette chose. Un quantum de l'espace est une «bulle» au-delà duquel il n'y a pas de définition de l'espace. Pourtant, il ya un espace à l'intérieur des bulles, en quelque sorte ".

      Je ne suis pas sûr que je comprends cette question (correctement), mais je vais prendre un coup de poignard à elle. Le premier paragraphe est en quelque sorte de ce que postule la TVQ, avec plusieurs mises en garde importantes. Tout d'abord, l'espace entre notre quanta quotidienne de l'espace est pas d'espace en soi, nous nous référons à ce que superespace, et même l'espace dans le quanta de l'espace est appelé intraspace. Si l'espace est quantifié ces autres espaces (super) et intra manifestes (si vous permettez qu'une quantique de l'espace est un volume plutôt que d'un point). Si les quanta de l'espace sont des volumes de fait, les deux autres séries de «espaces» sont nécessaires et distincte de l'espace normal. L'analogie de la barre d'or vient à l'esprit. Si vous divisez un lingot d'or jusque dans ses plus petits composants, des composants qui peuvent encore être considérés comme de l'or, vous arriverez à un point où vous pouvez continuer à diviser les constituants (atomes dans ce cas) plus loin, mais ce qui résulte de cette nouvelle division peut ne plus être considéré comme l'or. Dans cette analogie, vous avez dépassé le sens de «l'or» par fission de l'atome d'or, mais, comme nous le savons maintenant, il ya un ensemble beaucoup plus fractionnement qui peut être fait. Vous ne pouvez pas compter unités d'or par comptage des neutrons, par exemple. Bonne question cependant. Lutte avec cette question est au cœur de comprendre ce que cela signifie de dire que le tissu de x, y, z espace est quantifié. Le reste de l'image ne sera pas de sens jusqu'à ce que ce qui est intuitivement absorbé. Est-ce en venir ce que vous demandez?

      "Gravité est représenté par le gradient de densité de l'espace quanta. Mais la gravité est causée par la matière. La matière est pas d'espace. Comment ce même sens? "

      Tout d'abord, oui, absolument, la gravité est représenté comme le gradient de densité de l'espace quanta. La question que vous essayez peut-être d'obtenir à est, ce qui provoque ces gradients de densité pour former? Lorsque les gradients de densité quanta bâton de construire ensemble autour de ces conglomérats. Toutes les formes d'énergie qui se manifestent en x, y, z, t sont des distorsions géométriques dans l'espace-temps tout simplement. Ondes de densité pourraient se répercuter à travers le milieu - qui est une façon de soutenir une distorsion géométrique. (Quelque chose comme cela serait dit avoir de l'énergie qui est équivalent à une certaine quantité de masse au repos, mais il ne peut pas exister au repos lui-même.) Une autre façon est d'avoir une distorsion géométrique stable est d'avoir quanta qui sont collées ensemble. Une fois qu'un groupe de quanta sont collées ensemble, les quanta individuels autour d'elle, et qui se déplacent, pour la plupart, ellastically interaction, forment un gradient de densité en raison de la conservation de quantité de mouvement. Un seul quanta cognant deux quittera les deux déplacer beaucoup plus lent que celui d'origine. Mouvements lents se concentrent autour de la motte, et, mouvements lents créer une plus grande densité. Distorsions géométriques Donc permanant, ou au moins stable, comme quanta coller ensemble, est de masse dans ce modèle.

      "Le temps est la résonance de l'espace quanta. Pourquoi? Comment? Qu'est-ce raisonnement conduit à cette conclusion? "

      Ceci est une grande question et il pourrait utiliser un peu plus de l'enquête. À l'heure actuelle, nous pourrions dire que le fait que la dimension familière nous appelons le temps peut progresser à des rythmes différents suggère que le temps est associé à l'une motion spéciale, au lieu de toutes les motions. Quelle est cette motion? Selon la TVQ que le mouvement est les Resonations du quanta de l'espace. Cela nous donne un moyen d'avoir la clarté ontologique sur ce que cela signifie, même de dire que moins de temps a passé dans une région que l'autre. Une telle affirmation est plutôt incohérente sans quelque chose pour la comparaison. En d'autres termes, sans cette sorte d'explication, nous courons toujours le problème que, partout dans le temps de l'univers passe à un rythme d'une seconde par seconde. Voilà une grande source de confusion, sauf si votre comparaison ne soit pas auto-réflexive. Ici, nous devenons capables de comprendre la progression du temps, à tous les endroits dans l'espace, comme quelque chose qui peut être définie par rapport à Supertime. Ce besoin de beaucoup plus d'élaboration, mais il est certainement un début précieux.

      "Si il ya 11 dimensions, pourquoi ne pouvons-nous les voir? String Theory dit les extra sont recroquevillés extrêmement faible. TVQ semble avoir des dimensions supplémentaires juste une sorte de ... flottant là-bas ... "

      Tout d'abord, il convient de noter que la raison de la théorie des cordes pour expliquer pourquoi nous ne pouvons pas voir ces dimensions supplémentaires est exactement le même dans la TVQ. En fait, nous pouvons voir les effets que l'existence de ces dimensions dictent. Mettez dans l'autre sens, nous voyons les effets qui sont déconcertants pour nous (la mécanique quantique en général et quelques autres) et ils ne trouvent aucune solution ou de causer moins nous avons l'intuition dimensions supplémentaires. Cette question ne sépare pas la TVQ de la théorie des cordes. Ces autres dimensions seraient clairement visibles si nous pouvions voir les choses à la longueur de Planck. Mais nous ne pouvons pas (encore?). Donc, nous ne les voyons pas.

      Je espère que cette au moins clarifié les choses un peu. S'il vous plaît laissez-moi savoir si je l'ai mal interprété vos questions.

      • Jon dit:

        J'ai quelques questions. Si je comprends bien ce droit, cette théorie prédirait que le graviton légendaire ne sera jamais retrouvé, correct? Parce que si la gravité est pas une force, alors il n'y aura pas de force particules, non? Aussi, comment le champ de Higgs entrer dans tout cela? Je ne vois pas vraiment de place pour elle dans ce modèle, mais encore une fois je ne suis pas un physicien. Pouvez-vous préciser?

        • Thad Roberts dit:

          Jon,
          Oui vous avez raison, cela ne signifie qu'il n'y a pas le graviton. Quant à votre autre question, je l'ai posté une réponse à Peter dans la section «Questions et réponses» qui devrait clarifier la question avec le champ de Higgs pour vous. :-) Si vous avez encore des questions après avoir lu que s'il vous plaît laissez-moi savoir.

  5. Phyn dit:

    La première chose que je dois dire est que je pense qu'il est génial que Thad imaginé cette théorie et met en avant. Ce genre de réflexion prospective est nécessaire dans le domaine de la physique de ces jours, et je me espère faire de même à l'avenir.

    It is definitely an interesting theory, but I do have a few issues with this video, at least (some may arise from my ignorance):

    1. Thad claims that the general interpretation of the 4th spatial dimension is just as a mathematical trick to account for gravity. But that's a false claim. Most physicists do work that is not affected by whether gravity is a force or another dimension. So they may use a false interpretation, but because it would just complicate things for them without doing anything for them. The physicists that do work with space-time, astrophysicists and cosmologists, do need to know exactly what gravity is and they do define gravity as the 4th spatial dimension, not a force.

    2. Mass warps the 4th spatial dimension. So using the metaphor of weight warping a trampoline is perfectly valid.

    3. Thad claims that the Planck length bubbles move around. Pourquoi? Shouldn't space be a rigid structure, a grid? If the quanta of space move around like air particles, they would obey something similar to statistical mechanics. That means there is a non-negligible chance of having large clumps of quanta and large sections that lack any space at all. And with Thad's definition of time those sections would also move faster or slower through time. Note that these sections would arise for no reason at all besides the probabilistic nature of quanta of space-time moving around and bumping into each other. This is most certainly not seen in the universe.

    4. Thad's argument for extra dimensions has an inconsistency. If the Planck length is the smallest distance that can be measured or defined, it makes no sense to define new dimensions to explain position on smaller than the Planck scale. They mean nothing on both a human, mathematical level and on the level of the physics of the universe.

    5. I understand that there's much more to this theory, but Thad fails to explain how or why matter and energy as we see it now affect the quanta of space. I'm assuming this is explained further into the theory. Also, how does light fit into this theory? Light always travels at c, although with this theory that would suggest that light is somehow separate from this 11 dimensional space. (Personally, I have no issue with that idea and have had the same thought myself. But it does need to be accounted for.)

    6. If the Planck length scale is so much smaller than any particles, how is it possible for quantum tunneling to occur? It seems very unlikely for an electron to move through super-space without hitting another quanta of space for a distance over 10 orders of magnitude larger than the Planck length. Sure, it may happen every now and then, but the probability would be much smaller than what is seen now.

  6. Thad Roberts dit:

    Phyn,

    Thank you for your comments and questions. Let me try to address some of your comments as best as I can.

    1. My comments about gravity that you are referring to were meant to be in reference to a visual model of gravity, not to the equations physicists use to represent it or to what they hold to be true about gravity. Because they have worked for so long under the restraints of Euclidean (or even non-Euclidean but continuous) metrics, physicists use a reduced dimensional representation. You are correct in pointing out that this does not mean that they do not attribute the existence of gravity to be the result of an interplay with another spatial dimension. What I am after is an intuitive and accurate model, a new representation, for the geometry of Nature that gives us full intuitive access to things we currently do not have intuitive access to. In other words, my point is that the 'rubber sheet' diagrams do not give us FULL intuitive access to what gravity is, why is has the properties it has, and so on. My goal is to come to a model that does give us that access.

    2. The notion of weight sadly plays off of our intuition that something with weight is pulled down by gravity. I'm perfectly fine with saying that the presence of mass warps the trampoline, but as soon as we say make our representation based on the concept that it is its weight that warps the trampoline, we have now used some notion of gravity (weight equals strength of gravity multiplied by the mass) in our answer for what is gravity. This reduces the utility of our answer. That was my point. I am not mocking the value of the trampoline in any way. I love that it is an attempt to be a model that we can access to at least partially gain an intuitive understanding of how gravity works. I'm just looking for a model that goes a bit further.

    3. Technically I'm not actually claiming anything (nor is anyone else working on qst). We are, however, hypothesizing about the geometry of spacetime and seeing where our hypothesis leads us. We are setting some axioms up for space and checking to see if those axioms set up a system that naturally contains that which we currently call mysterious. As scientists we understand that our current set of axioms might turn out to be incorrect, but so far they are leading us to something quite promising. In addition, we believe, as you appear to, that even if we end up proving that our set of axioms do not mimic the construction of the Nature's fabric, exploring new ideas is what science is all about. Right or wrong, there is a lot to learn from the process we are undertaking.

    You are correct in noting that our current assumptions about the structure of x, y, z space depicts the quanta moving around, which makes its representation something akin to statistical mechanics (hence the many quantum mechanical effects that we see in Nature). I'm curious as to why you think that the structure of spacetime should somehow be constrained to being a rigid grid. In the end you may be right about spacetime having this property, but at this point I see no reason to assume this as a brute contraint. Also, the point you made about having sections of space that will evolve at different rates through time is absolutely correct, however it only applies to very small scales (unless a macroscopic density gradient is present = curved spacetime). As we move to macroscopic scales (like 10^-25 meters, or 10^-34 seconds) these effects are washed out for the same statistical reasons you pointed out earlier.

    4. I apologize if I misspoke or caused a confusion on this point. In our system the Planck length is defined as the smallest quantum unit of x, y, z. Just as a gold atom is the smalls unit of a chance of gold, a quantum of space is the smallest unit of any x, y, z volume. It does makes sense to talk about less than one gold atom, or to visualize splitting a gold atom, but it does not makes sense to continue calling what you end up with a fraction of a gold atom. Once you go smaller than one gold atom you have transcended the definition of gold. You do not have gold any more in any sense. At this point you are forced to recognize that what you have is something completely different from gold. The same applies for our geometric system. Since we have set up an axiom space that defines the medium of x, y, z as being composed of quanta, comprised of base units, we cannot talk about smaller units and still be talking about anything in the x, y, z realm. This, however, does not inhibit us from talking about something smaller. It just requires that when we do we recognize that we are talking about something else. In as much as we are talking about spatial dimensions, positions within a single quanta occupy different superspatial positions, but those different positions do not reflect upon the x, y, z metric. The geometry is quite interesting mathematically because it is a wholly invertible map. In other words, it is a perfect geometric fractal. As it turns out, this system also appears to comes with a few properties (like the statistical character you mentioned before) that are quite suggestive of quantum mechanical effects.

    5. Great questions. As a short answer: matter is any stable (on whatever scale you choose to define as long enough to count as “stable”) distortions in the geometric arrangements of space quanta. For example, if two quanta stick together like bubbles for a long period of time before being separated by other collisions, then they represent a geometric kink for that period of time. This kind is mass. Energy can be thought of as distortions that are not stable without propagation. A density wave for example can travel from point A to point B and be thought of as stable during propagation, but it cannot retain itself without propagating through the medium.

    Light does always travel at c, in the x, y, z medium. Wave speeds of a particular medium change as the density, pressure, temperature of that medium change. So from the eleven dimensional perspective waves that travel through the medium will be resolved as having speeds that depend upon the density of that medium. However, compared to the medium itself this speed is non-variable. In other words, from the internal x, y, z perspective the speed of light is a constant. Perhaps I am missing the thrust of your point/question. Please elaborate if I have not addressed your concern.

    6. Technically the electron is defined as having a zero sized radius. Since quantum mechanics restricts the minimum size to the Planck length we might think that “zero” really means one Planck length. I'm not sure where I stand on this specifically. But I will say that the probability for electrons to sail through the medium without interacting much is quite large if it is even close to one Planck length.

    Thank you for your insights, thoughts and questions. I personally wish you luck as you pursue your own development of a TOE. If you keep asking questions like these I'm sure you'll make a big impact on the world.

    Thad

    • Phyn says:

      Thad,

      Thanks for the quick response and clearing up my comments/questions. I do have a few more about your reply. (I'll try to number them to match the previous numbers)

      3. This might just be from my lack of knowledge/experience, but isn't there a non-negligible probability (using statistical mechanics) that a region could form with a very high density of space quanta or a very low density? Looking back I realize now the probability of such a region forming on any detectable scale is highly unlikely, but there is some chance. So there could be a region or regions in the universe that act like a black hole (or the inverse of that) without any energy or mass having caused it. Or am I stretching how likely such an event would be?

      4. I think what I was trying to ask with this question is why the three dimensions that are defined within the quanta are necessary?

      5. My questions about light basically pertains to how light is different than matter in your theory. If light also travels through super-space and space quanta, why is it still seen as traveling at c at any velocity the observer is at? As I understand it, the reason light always travels at c is because special relativity has an asymptotic behavior. Time dilation and space contraction go to infinity as velocity goes to c. I can see that in your theory the behavior would be exponential, but it's not clear to me why it would also be asymptotic. Light would still pass from space quanta to super-space to space quanta, so wouldn't it still experience some time and space? Sorry if I'm not being clear.

      Also, I was wondering about how your theory fits with super-inflation theory. Can space quanta be created/destroyed? I assume not and if so does that mean the universe before super-inflation was in a sense a super black hole? In this theory was super-inflation just an expansion if these very dense region of space quanta? Or do you have some other explanation? Along similar lines, do space quanta have a speed limit? If they do, what is it? If it is c how would you account for the super-inflation event?

      Thanks again,
      Phyn

  7. Thad Roberts dit:

    Phyn,

    Great questions. :-)

    3. Yes, due to vacuum energy there is some probability that matter, or for that matter even a macroscopic black hole, could form without any previous forms of matter leading to its formation. However, to say that it formed without any energy having caused it may be a bit of a stretch. If we restrict our definition of energy to specific forms, like light or baryonic matter, then we can say that. But such a restriction seems a bit artificial to me. The inherent energy of the quanta of space bouncing around and interacting with each other would be responsible.

    4. Within a quantized metric the three intra-spatial dimensions are necessary for defining position more accurately than x, y, z dimensions allow. On a more metaphysical level (the philosophical definition of metaphysical not the new age one) they also allow us to access the actual structure of the Universe and how that structure is responsible for how things are. If we ignored them then we would be missing part of the picture. And interpreting a system from a reduced construction can lead to confusion. Technically the eleven-dimensional construction is also only an approximation. The next level of increased accuracy is a axiomatic metric of 30 dimensions, then 85, then 248 and so on. The full picture unveils as a fractal, and that full structure gives us even richer access to questions that reach beyond the confines of our local system (the Universe = all the space connected by the last Big Bang).

    5. This question is rich and worth some time. Perhaps you would be interested in reading the preprint of my book? Chapter 8 – The Speed of Spacetime explains in detail why the speed of light is constant according to this geometry, and why Lorentz contraction and time dilation occur. Your question might be more fully addressed in there.

    If I am understanding your question correctly, then it might be worth pointing out that according to the definitions set up in our construction a quantum of space does not experience time expect in whole number increments of the Planck time. However, the quanta do still experience supertime as they move through superspace. This means that things can move from quanta to quanta as we the observers move through time, but since the passing from one quanta to another involves the elastic properties of the quanta (and so does the passage of time), the fastest something can move through x, y, z space is such that the number of quanta it has moved is equal to the number of chronons in time that the observer has aged. This thing/energy moves through x, y, z space but it does not move through time (because it does not experience any independent resonations). It changes position in space and the observer moves through time by an equivalent number of quantum values. So anything moving in this fashion does move through space, and then superspace, space, superspace, and so on, and all along through supertime, but it does NOT move through time. It does, however experience supertime. Is that what you were getting at?

    Also, as per your question about inflation… I believe that qst does not have expectations that space ban be created or destroyed. The Big Bang, in this model, occurs because another universe outside of the system of our universe collides with our universe. The structure of our universe (the arrangements of the quanta of space) is altered in response to this such that all of the quanta are pressed together. The complete system is a collection in which there are no independently acting quanta (hence it acts as though there were only one location in the entire Universe and of course no time). This is very close to the picture of a black hole, only a real black hole forms internally from a loss of energy, this forms from energy from outside the system so it is not a stable configuration. Then, when the two systems rebound off of each other their internal constituents begin to separate, causing there to be more than one uniquely acting location within each. So each universe goes from having effectively one unique location and no time to having many many uniquely behaving locations and some time in a very short burst (whether you measure it by time or supertime). Chapter 29 deals with this topic in much greater detail should you desire to read it.

    Je espère que cela.

    Please remember, even if this theory eventually ends up jiving very well with what we know so far, and gives us more of an explanation that any other construction, it doesn't mean that it is right or that we shouldn't all keep asking questions and thinking up new ways of seeing things. Climbing beyond our current edge of understanding is what it is all about.

    • Phyn says:

      Thad,

      Thanks for the answers. I think that clears up the questions I have right now. I just requested a pre-print copy of the book and can't wait to delve deeper into this theory. And I completely agree that we always need to keep questioning.

      Phyn

  8. Stephen says:

    This question is for Thad, or for whomever can answer it. I'm really impressed with all of this. It's definitely very convincing and I'm really looking forward to seeing how this is either supported or refuted within the scientific community. The main question I have though, is how does QST play into the emergence of the forces during the first moments of the Big Bang? I know that theoretical physics holds that the fundamental forces emerged as a consequence of the Big Bang and were not immediately present at the inception of the universe. I'm just wondering if QST affords a comprehensive explanation for this. If there is would you mind sharing that with me? Also, if there isn't a comprehensive explanation, could you explain how they figure that the fundamental forces were not present at the genesis of the universe?

    Also, I've been searching the web and haven't really been able to find a lot on QST other than on your website. I'm just wondering why such an interesting idea hasn't taken hold in the scientific community and why no one has openly talked about this theory of yours. Do you know why this is the case? I'd love to hear more about this. I've been gobbling up your website watched both your conversation pieces and the TED talk, which will hopefully make these ideas more public, and I'm really excited by the prospects of QST and what it can mean for the breadth of human knowledge.

    • Thad Roberts dit:

      Dear Stephen,

      Merci pour ton message.

      First off, let me apologize for the late response. I have been at the bottom of the Grand Canyon, exploring a land full of mysteries and beauty. It was an amazing experience.

      In response to your questions:

      We share your excitement and curiosity about this theory, and look forward to seeing how it with be either supported or refuted by science. We might, however, point out that this is different from being excited about refutation or support from the current scientific community. Because science is made up of a compilation of research programs, it is an active social entity – carrying several social pressures that can lead it astray in any given point in time. Nevertheless, because science is a self-correcting machine, over the long haul it will correct itself toward a more clear and accurate picture. That is to say that if the current climate in the scientific community was such that it immediately accepted qst, this would not in and of itself provide concrete support that qst is an accurate reflection of Nature. Neither would its immediate rejection (there are several historical examples of theories that we now accept that were rejected by the scientific community at large in the time (and social climate) that they were first proposed in). What really matters is – does qst accurately map the true structure of Nature? We are hopeful that we will secure a clear, non-biased answer to that question in time.

      You asked how qst plays into the emergence of the forces during the first moments of the Big Bang… The answer is a beautiful example of how qst gives us incredible intuitive access to rather complex ideas. First, let me note that current thought suggests that as we run the clock back toward the Big Bang, there are symmetries that go from broken to unbroken. Translating this into English, this means that as we approach that first moment we go from having distinctly recognizable forces (four of them) to forces that merge in their descriptions. As we approach the first moment (after the Big Bang) all four forces gain complete symmetry with the background metric. They can no longer be teased apart in this state. This special axiomatic state of the Universe is responsible for the fact that the forces are no longer indistinguishable from the metric.

      In qst, this situation is made more clear. In this model it is suggested that in that first moment, all the quanta that make up our universe were compressed together (by an external collision by another universe). Because of this there were no uniquely acting quanta (locations) in the universe in this moment. The whole collection acted like a singularity, but instead of reaching this state by losing energy and maximizing entropy, it represented a highly energetic state with minimal entropy (because of its external cause). Because all the quanta acted in unison, there was in effect, only one unique x, y, z location at this point in time. The significant result of this geometric condition (as per our current discussion), is that it was not possible to have spatial density gradients in this moment, nor was it possible to have any waves propagating through the x, y, z medium, or little whirlpools of mixing, etc. The entire axiomatic set of quanta were rigidly locked together. This is why there were no distinguishable forces from the background metric. As the rebound occurred, and the quanta that make up the x, y, z volume of our universe began to separate, the number of independently acting locations in the universe exponentially multiplied, and the geometric distortions that we refer to as forces became geometrically possible.

      Please let me know if that helped.

      About your question about why qst has not taken hold in the scientific community yet… a little background might help here. Scientific progress is a messy thing. In part, this has to do with the demarcation problem (the task of being able to identify scientific endeavors from pseudoscientific endeavors). Karl Popper famously tried to help speed science along, and overcome this problem, with the suggestion that what makes something science is that it is falsifiable. This has been a popular criterion of science ever since. I am certainly drawn towards the claim that a theoretical construct should make claims that can be falsified before we put our full trust into it. However, as has been pointed out, Popper's criterion cannot actually distinguish scientific endeavors from pseudoscientific ones. There are fields that we all feel comfortable labeling pseudoscientific that make falsifiable claims. But more importantly, all fields considered scientific rest on axioms, assumptions, and non-falsifiable statements that play a fundamental role in their construction. If we are expected to abandon all theories that contain non-falsifiable statements, then there would be no identifiable sciences at all. In response to this some have grasped for the idea that there is some sort of art to picking the axioms beneath a theory – those that perform that art too loosely fall out of the range of science. This idea lead Thomas Kuhn to conjecture that what it meant to be scientific was to conform to the current scientific paradigm. In this view science becomes merely a social construct that shifts with the tides of time. Paul Feyerabend and Imre Lakatos later wrestled with these issues and came to the conclusion that science is not an autonomous form of reasoning, but is inseparable from the larger body of human thought and inquiry. They determined that because science is a human endeavor questions of truth and falsity are not uniquely empirical.

      All of this has led to the general recognition that the demarcation problem is intractable. In response Paul Thagard has suggested that we alter our focus and deem a theory as non-scientific if it satisfies the following two conditions:

      1 – It is unpromising: The theory has been less progressive than alternative theories over a long period of time, and faces many unsolved problems: and
      2 – It doesn't adhere to the Scientific Method: The community of practitioners makes little attempt to develop the theory towards solutions of the problems, shows no concern for attempts to evaluate the theory in relation to others, and is selective in considering confirmations and disconfirmations.

      Note that the first criteria requires long periods of time.

      Certainly, in reference to this evaluation qst is in a scientific vein. However, according to this criteria a “long period of time” must pass before we can expect it to have secured a place for itself in scientific history.

      Cutting through all of this philosophy of science, I suspect that the answer to your question has a lot to do with the fact that the majority of practicing scientists are not fully aware of the intricacies of theory construction, or the full history of the demarcation problem. Many scientists have communicated with me about the value they see in this theory. Others have found this theory objectionable based on an emotional fear that it might disagree with currently popular agendas. For some reason these individuals try to undermine the credibility of qst by resting on Popper's falsifiability requirement, which I find strange since there are many many ways in which qst can be falsified.

      All in all, however, I believe that the biggest reason qst has not yet taken off to a mainstream platform is that it is new. We simply need to give it more time and keep spreading the word. It may also have a bit of a harder time taking off than we might expect because it was mostly developed during some intense years of research while I was in prison. Nevertheless, I am confident in the self-correcting method of science, and I believe that it will eventually fully evaluate the richness of this theory.

      Just before he passed away, I was in communication with Benoît Mandelbrot, the father of fractals. We discussed the fractal structure of qst and he granted it his blessing to the idea. Mandelbrot was a man that gave the world a new idea, and he gave it to them in a non-traditional way. After professional scientists outright rejected his idea, Mandelbrot continued to develop his insight and share his idea until its practical powers were undenyable. The world at large became familiar with fractals and began to use them in electronic designs, biological calculations, and more. Then and only then, did the research program of formal Mathematics accept the importance of Mandelbrot's ideas. The lesson I take from this is that, if an idea is useful and brings us closer to the truth, it will eventually be heard.

      Merci de votre intérêt.

      Also, if you want to read more, I'd be happy to email you pre-print pdf copy of the entire book.

      Cordialement,
      Thad

      • Stephen says:

        Thanks Thad, this is immensely illuminating. I have to repeat that I'm really excited by the prospect of this theory. Murray Gell-Mann says that “there is a common experience in theoretical physics: that BEAUTY is often a very succesful criterion for choosing the right theory” and there is no doubt that qst provides an example of a very beautiful explanation of the construct of our universe. I'll definitely be watching to see where this theory takes us in the coming years. I'm sure that we'll hear a lot more from people once your book is published.

        Also, is there any illumination that qst can cast on young's double-slit experiment? If you can't tell already your new theory is making me so curious about so many persisting physics questions and how it might be able to help us understand them.

        • Thad Roberts dit:

          Stephen,
          I've emailed you a pre-print pdf copy of the book. Please let me know if you didn't receive it (its a rather large file). Chapters 12 and 13 should adequately address your question about how qst makes sense of particle/wave duality. I think you'll be delighted to discover the solution it posits. I might add that Bohmian mechanics offers a rather interesting ontological perspective on the whole particle/wave topic. You might be interested in investigating that a bit also. The two perspectives have a lot in common.

          • Stephen says:

            Oh great. I'm excited to dig into it. I'll be sure to let you know if I have further questions

  9. Stefan palmer says:

    I am a student at weber state majoring in sales so needless to say i know nothing about quantum physics. In fact i hadnt even heard of it until i got home late one night and stumbled across you and this sweet website. I have always been fascinated by space and how this world goes round. But i have always assumed that all of that stuff was over my head, but you lay out information that is so complex so simply that a dumb ass sales major can follow what you are teaching. I am not being humble just realistic when i say i will never be able to make the discoveries you have, but i am so thankful you are willing to share your knowledge with me. If we all put our energy into helping each other a long we would be so much better off. Thx for doing just that, and i will keep my eyes open for any updates or discoveries you have made. The only complaint that i have is its 730 am And i have to get up at 9 but i cant get off this damn website to go to sleep because of how fascinating the discoveries that you have made are. Thx again

    • Thad Roberts dit:

      Dear Stefan,
      Its great to hear about your excitement. I believe that everyone can be a part of the amazing quest to uncover the truth and peer behind the veil. We all have what it takes to ask questions and try to make sense of the big mysteries of our time. I see the end goal as desirable, but the journey as the real treasure. Thanks for joining the journey. I look forward to seeing where it takes us. If you are interested in reading a preprint of my book, please email me and I'll forward a pdf to you.
      Thad

  10. Stefan palmer says:

    Thankyou so much my email is stefan.​d.​palmer@​gmail.​com

  11. Ben dit:

    Thad, I find qst theory amazingly elegant and would really like develop a deeper intuition of it. Could you perhaps send me one of those pdf copies?

    bwc7​0​@​email.​vccs.​edu

    Cheers, Ben

  12. jake3_14 says:

    As a language lover, I'm confused by the terms that have origins in x,y,z space applied to non-x,y,z space. How can quanta have inter-space is the notion of space itself is rooted in three dimensions? Similarly, how can quanta move in superspace, when the concept of movement is rooted in three dimensions? Even the concept of resonance is rooted in the 3-D concept of vibration. Doesn't QST (and perhaps, quantum mechanics) need distinct terminology, even when trying to simplify it for the lay public, so that the public doesn't try to apply three-dimensional concepts where they don't apply?

    • Thad Roberts dit:

      Jake, You are certainly correct, distinct terminology is needed here. Our language is well rooted in Euclidean assumptions, but this model is not Euclidean. Throughout the book I try to keep these issues clear, giving distinct names to different kinds of spaces (intraspatial, spatial, and superspatial).

  13. jake3_14 says:

    Typo in the above: ” How can quanta have inter-space *if* the notion of space itself is rooted in three dimensions?

  14. Gary says:

    One major confusion,

    In conversation one we hear how bodies do not exert a force of gravity between each other thereby causing orbits… we learn that this is a fudge of classical thinking.

    We instead learn the very intuitive ideas based on density and the redefinition of what it means to continue following the straight line. That is, that in QST those orbits are not the result of a phantom pulling force but rather the result of 'curved' space causing a straight path to describe a closed loop (or, rather, a closed loop to describe a straight line)

    PROBLEM

    In our universe, orbits decay and objects collide… yet in QST only two straight paths exist. The first would appear to offer an eternal orbit (eternal as no gravitational force is acting) The second would be a direct line towards the centre of density (Climbing the gradient) which, in the absence of a classical gravitational pull, should be as simple as leaving the centre of density (Descending the gradient)

    But, we know that firing a rocket straight up from the earths centre of mass is rather difficult as an 'apparent' pull is felt. Can QST account for this problem of descending the gradient?

    Alternatively, we know that left alone and undisturbed a rocket at apogee will submit to an apparent pulling force and ascend QST's gradient… but the motivating nature does not appear to be accounted for.

    And finally, as mentioned, orbits decay. If one imagines a perfectly circular gradient of density as might be described by a large mass… QST seems to dictate that, in the absence of mans bogus gravity, an orbiting object will orbit indefinitely as nothing is acting upon it to sway it from continuing in its perfectly straight (closed) line (loop)

    I worry (perhaps unfairly) that Thad's QST is fulfilling its aims, but only if the aims are to sell books. It is a legitimate worry with all of the snakeoil currently being peddled … and, whilst I hope this is not the case, it would cheer me up considerably if I didn't 'instinctively' feel so many inconsistencies. In some ways I would feel much better if the scientific community felt inclined to debunk QST – as at least then it would mean that it had possibly touched a nerve.

    I wonder if anyone can shed light on the above QST explanations for the observable effect we dub 'gravity'

    Merci beaucoup,

    -Gary
    Humble Student, The Open University (UK)

    • Thad Roberts dit:

      Dear Gary,
      It remains unclear as to why you presumed that only two straight paths exist. Perhaps this was an artifact of a brief description you encountered instead of the full one. I invite you to read the whole book, and encourage you to be critical of it. Should you find any internal inconsistencies, please point them out. In lieu of that interaction, it may help to note that in a density gradient of space, the straight path for a particular object also depends on the velocity of that object. Two objects approaching a radial density gradient (like the one belonging to the Earth) with identical directions, but different speeds, will follow different paths in response to that gradient. Each path is the straight path for each object. Both sides (and all parts) of each object must interact with the same amount of space. This, of course, is what we observe. Also, it is important to remember that all gradients present play a role. It would be a mistake to oversimplify our example if we mean it to apply to the real world. Of course, often times out of a desire to explain the model simplifications are used – like starting with a region that holds just the earth and another object. Starting with such a simplification does not imply that the model actually thinks the real universe only contains these two objects. For prediction purposes this model is matched perfectly with Einstein's description of spacetime curvature. The primary difference between models is the intuitive import that this one carries with it. That said, it is based on clear and well-defined assumptions, which anyone is free to agree with or disagree with. Disagreeing with the assumptions does not really attack the model, it just steps outside of it and ignores it altogether. To attack the model one must find internal inconsistencies. If you'd like to receive a free copy of the book (as I have offered all along) I'd be happy to hear your thoughts on it. Thank you for your skepticism.

  15. Armen says:

    How would qst explain our asymmetric visible universe in terms of matter and anti-matter?

    • Thad Roberts dit:

      Grande question! The answer comes from a property of superfluids. When we rotate a superfluid volume, the bulk of that volume does not start spinning about like a regular fluid would. Instead, the rotational energy we put into the system is absorbed internally as quantum vortices inside the bulk. The direction we rotate that volume will determine the direction of those vortices. The model assumes that the vacuum is a superfluid, and that on a different resolution the entire universe is like a suspended superfluid drop in a higher system. The expectation is that collisions between drops will rarely be head on. Instead, they will impart at least a small amount of rotational energy into each rebounding drop/universe. But, since each is composed of a superfluid, that rotational energy will manifest internally as quantum vortices. As stable metric distortions, these vortices are the analog of fundamental matter particles. So in one universe they will have one direction, and in the other the reverse direction. Additional vortices can be created within the bulk, but they must be created in pairs (matter and antimatter equally). Since the vast majority of vortices are consequent from the last external collision, we have an overwhelmingly majority of vortices that correlate to matter and only a little that correlate with antimatter.
      Thad

  16. brett says:

    please send me a copy of your book. this is good work.

  17. Daniel says:

    Cher Thad,

    Tout d'abord: merci pour cette nouvelle vue éclairant sur la réalité. Please send me a copy of your book.
    Deeply impressed with your work, I set out on a quest to find any comments on this by any credible scientific sources. Perhaps my searching skills are failing me, but I am having trouble finding any. At the moment, that is my biggest concern about your theory. The fact that it has been around for years now, and revolutionary as it seems to be, it has not caused a huge stir in the scientific community. Again, perhaps my searching skills have failed me, I hope they have, and if so, please enlighten me once more.

    Either way, I love what you're doing, please keep doing it!

    Cordialement,

    Daniel

    • Thad Roberts dit:

      Try searching for the more general overarching name 'superfluid vacuum theory.' Of course, you'll find that despite the many publications that fall within superfluid vacuum theory, we are a far cry away from seeing a stir in the scientific community. A revolution in thinking requires first that people value thinking. The current situation in the physics community counters that value. Only one interpretation of quantum mechanics is taught in most universities, and it is the interpretation that most discourages thinking – in fact it attempts to actually forbid an interpretation, which is why some have called it “the Copenhagen non-interpretation.” It is even popular now to deny philosophy as a part of science, which reduces science to meaningless technician work. So the revolution we are pushing is less about a specific new interpretation or model of Nature, but one that brings science back to a nobel human endeavor. Your skepticism is more than welcome, it is encouraged. Scientists should not make ultimate claims to truth, but they cannot abandon the quest for truth and call themselves scientists either. Vous envoyer le livre maintenant. Please examine it in full and send your critique.

  18. Shane Killeen says:

    Salut Thad

    I have only recently discovered your work when an acquaintance of mind, the writer AA Attanasio, suggested I check out your work and since then I have watched all I can and read through this comment thread with great interest. I have absolutely no scientific background but have pursued a theory for the last 15 years that explains all of these phenomena intuitively as one cogent whole. What I find staggering is how many conclusions are the same and how similar the grand picture is. I dare say that I believe I have something significant to contribute your theory but it would be jumping the gun without having studied your whole document. I tried to find it on Kindle with no luck. Is it possible that I could have a copy of your book as well? It would be deeply appreciated and an expansion on what is already a remarkable affirmation.

  19. Niklas says:

    So, I think I'm following all of this pretty well, except how the quanta create matter as we know it.
    My mind is all over the place, so I apologize if you get lost, haha.
    How do quanta stick together? Is it a stable geometry dependent on factors like temperature, distance, charge, etc? (There are 5 that we know of, right?) Does each quanta have a unique value for each of those? Or react TO those quantities in a field around it? And do these quanta eventually stick together so much that they form, say, a quark? And depending on the geometry they form different quarks? Then those quarks form different geometries into particles? What stops quanta from continuing to get stuck? Constants of nature? How are those defined?

    Second question, kinda:
    How would we explain tossing a ball straight up into the air? The ball travels through a very dense field of quanta, but what pulls it directly back down? The fact that the “bottom” of the ball is bouncing off of quanta more than the “top” of the ball?

    • Thad Roberts dit:

      Hi Niklas,

      These are great questions. I will give short answers here, but I have written up much more detailed explanations on these very topics in my book. If you do not have it please send me an email requesting it and I'll pass it along.

      First let's recall that the quanta are constituents of a superfluid. Superfluids support quantum vortices, which do not dissipate because the superfluid has no internal friction. These stable quantum vortices are the fundamental particles. Quantum vortices only exist in quantized sizes. This gives us a method by which to match up the fundamental particles of mass in Nature. Remember, mass is a distortion in the fabric of space, the vacuum. So the notion of mass is no longer applicable on the scale of the quantum.

      The constants of Nature section in my book should answer all of your questions on this topic. If not, I'd love to hear your questions.

      As for your questions about the ball being tossed straight up. The thing to remember is that the “field” of curved space, or the density gradient of quanta, is not a static thing. In the macroscopic sense its average properties might seem static, but the underlying motions and actions that form it are not. All we have to do is remember that objects that are not under the influence of a “force” will tend to travel straight. The straight path is what we must consider, and the solution is always the path that allows all parts of an object to experience identical amounts of space. If an object is sitting in a density gradient of space, the little motions of the quanta that make up that gradient determine how much space the object experiences. Since there is a non-zero gradient, there is a macroscopically measurable different in the amount of quanta interacting with the “bottom” side versus the “top” side. Which ever side is interacting with space the most determines the direction the object will tend to go. Chapter 9 will describe this in greater detail.

  20. Jean dit:

    Thad,

    As a futher device for our imagination would you mind stetching, with commentary about density gradients, the jounery of each of a single photon, neutrino and electron from say a super nova explosion till that particle interacts with something.

    It is also a test of the explainatory power of your theroy against current obsevations.

    I love your work and it seems to me as a trained logician that it would make sense to test a theory with minimal assumptions before inventing the current set of ad hoc assumptions for dark matter, dark energy, gravitational force gravitions, etc

    • Thad Roberts dit:

      Salut John,
      As a single photon travels through “empty” space from a super nova until it interacts with something, its path is determined by the vacuum state of the region it is passing through. That state evolves through time, but if we assume empty space, meaning zero curvature, then the largest effect we must be concerned with is the microscopic effects from the different possible arrangements of the quanta (the different allowed configuration states of the vacuum). For large wavelengths of light those differences will be washed completely out by the averaging-over process, but for sufficiently high energy photons (short wavelength) there will be noticeable effects. For example, the scales on which we would call the paths straight will decrease, and more importantly, photons that are extremely high energy will tunnel through the vacuum – meaning that they will go from location A in space to location B without interacting with all the space between those two locations. One testable prediction here is that these high energy photons will exhibit less red shift than lower energy photons from the same sources (or distances). The model specifically explains that red shift is a function of the inelastic collisions between quanta of space, so if the highest energy photons are skipping some of those collisions then they will be less red shifted. The practical difficultly with measuring this effect is that it is only really expected for photons with wavelengths that approach the Planck length (at least within an order of magnitude or a few orders). Nevertheless, the effect is waiting to be measured.

  21. Christian Grieco says:

    Thad,

    Your work is fascinating. It's simplicity is eloquent. Was hoping to learn a great deal more and am hoping to get a copy of your book.

    • Thad Roberts dit:

      Merci. I'm emailing you the book now.

      I have also recently just finished showing (including the math) that a superfluid vacuum automatically explains the electric field and magnetic field as divergence and curl in the flow of the vacuum. I'm starting to edit chapter 20 to include that information, so if you are interested then send me a request for an update before you reach Chapter 20. 😉

  22. Anderson says:

    I'm in love with this idea that reality is 11 dimensional. I would have to ask however that if 1 planck can be thought of as a bubble, what is the measure of the surface of the bubble? Is the circumference still Pi? It seems to me like it would have to be, but I'm concerned that that might be my predisposition to think in a Newtonian way. At such a small scale, are these “bubbles” even spherical? And although it might be impossible, as a thought experiment think of a creature that exists in superspace and is on the surface of a planck bubble, how would that creature experience time? Or would it only experience supertime?
    The more satisfying our answers become the more bizarre our new questions must be.
    Alas, I am only a layman.

    • Thad Roberts dit:

      We treat the bubble as spherical in a time-averaged sense. Nevertheless, the shape of their boundaries are not defined in x, y, z space at all. Instead, they are defined in superspace. And in superspace, yes, the ratio of their circumference to diameter would be π. The hypothetical creature you speak of would not experience time at all, because such a creature would not be made up of space. Instead she would be made up of superspace, and would experience supertime. Chapter 11 of the book goes into more detail on this. Envoyer à vous maintenant.

  23. Frank says:

    Hi, thank you for this video. I appreciate how 11D can be visualized in the mind, but it was helpful seeing the drawings as well.
    What is left after the smallest unit of space is divided? If it's no longer space or a planck bit, what is it called?
    Would it no longer be located within the 11 dimensions?
    Are there infinite dimensions?
    May I have a copy of your book?

    • Thad Roberts dit:

      Bien sûr. I just emailed you a copy of the book. I think you'll find the figures in the book quite helpful. When we talk about less than a Planck length of space, we are not talking about space. Instead, we are referencing intraspatial information. The name is not as important as the properties. In this model, the vacuum is made up of quanta, the quanta are similarly made up of sub-quanta, and those are made up of sub-sub-quanta, and so on. The fractal structure of the model guarantees that the relationships between each of these levels of construction are self-similiar. It is this fact that gives us direct access to the complete picture. The total number of dimensions in the map depends upon your resolution level. The equation is # of dimensions = 3^n + n, where n is your oder of perspective. Treating the vacuum as a continuum is a first order perspective. Quantizing the vacuum is a second order perspective. Quantizing the quanta is a third order perspective and so on. So if you wish to map Nature with infinite resolution, then yes, according to this construction there are infinite dimensions. But a second order resolution can get you a full explanation of the dynamics observed in quantum mechanics and general relativity. The cause of the Big Bang, however, requires at least a third order perspective to resolve. Chapter 11 should make this more clear.

  24. praroop joshi says:

    hey thad…i am a student but i am really interested in these kind of theory , but i have a minute question
    can gravity travel in different dimension ?
    just like they say in BRANES of string theory.
    and is this the reason that the gravity is the weakest among all the fundamental forces?
    and one more thing if we were to live in different dimensions rather that X,Y,Z, what will it consist i mean can time be an spatial co-ordinate?
    wait for your reply.

    • Thad Roberts dit:

      Your question brings us to what is known as the hierarchy problem. Let me respond with an excerpt from Chapter 19 in my book that addresses this topic:

      Despite the fact that particle physicists have devoted decades of intense research to solving the hierarchy problem, the question of how the feebleness of gravity interlocks with the rest of the picture remains a mystery. The standard model of particle physics makes it easy to treat all forces as the result of an interchange of force particles. With regard to the electromagnetic, weak, and strong nuclear forces, all of our experiments have shown an absolutely stunning alignment with this theoretical depiction. This alignment becomes the supporting foundation for an underlying symmetry in Nature because it links the strengths of these forces into a relatively tight range and unifies the source of their origination and the proposed mechanics responsible for them.

      All of this is aesthetically beautiful and pleasing, except for the fact that we have a rather serious upset when we attempt to compute the strength of gravity through the same model. Paradoxically, when we treat gravity like we treat the other forces—as a similar exchange of some kind of force particle—we find that the standard model clusters gravity's expected strength in range with the other known forces. It predicts that the symmetry underlying the other forces should also belong to gravity and it spits out a value for the strength of gravity that is astronomically different from what we observe it to be.

      Comparing gravity's actual strength to the standard model's theoretical prediction of its strength, we end up with a discrepancy that spans sixteen orders of magnitude. This is a serious problem. Such an enormous misalignment suggests that the standard model of particle physics is still missing something big.

      Over the years, two popular approaches have attempted to make sense of this enormous discrepancy. The first approach assumes that gravity does in fact belong clustered with the other forces in symmetry and strength—that the true strength of gravity is as the standard model predicts. To account for the feebleness of gravity that is observed, this approach then makes the claim that gravity undergoes an enormous dilution by way of additional dimensions. In other words, gravity is attenuated, which means that its strength is primarily dispersed elsewhere. ( This is what you were suggesting. )

      In order to make this approach work, theorists have been forced to assume two critical conditions. First, in order to sufficiently dilute gravity the extra dimensions have to be very large, or very many. Second, gravity must be the only thing that is capable of being diluted throughout these extra dimensions. This assumption ensures that everything that doesn't involve gravity would look exactly the same as it would without extra dimensions, even if the extra dimensions were extremely large.

      The problem with this approach is that without a framework by which to uniquely select a specific number of extra dimensions, or to explain why gravity is the only thing that becomes diluted, these conditions introduce mysteries that are just as big as the one we set out to explain. These assumptions merely reword the hierarchy problem.

      Nevertheless, this idea posits an interesting prediction. It says that deviations from Newton's law of gravity should exist on distances that depend upon the size of those extra dimensions, which is correlated to the total number of extra dimensions that gravity is diluted through. If there were only one large extra dimension, it would have to be as large as the distance from the Earth to the Sun in order to dilute gravity enough. That's not allowed. If there were just two additional dimensions, they could be as small as a millimeter and still adequately dilute gravity. With more additional dimensions, it can be sufficiently diluted even if those extra dimensions are relatively small. For example, with six extra dimensions the size need only be about 10-13 centimeter, one ten thousandth of a billionth of a centimeter.

      To date, gravity's alignment with Newton's inverse square law has not been tested on a scale capable of ruling out, or supporting, this prediction. Because of this, supporters of this approach for solving the hierarchy problem hope that more accurate measurements will one day discover deviations on scales smaller than a millimeter and vindicate the idea. Any such evidence would be interesting, but wouldn't bring us the full ontological clarity we are after.

      The second popular approach for solving the hierarchy problem also assumes that the standard model's treatment of forces (being created by the interchange of force particles) applies identically to gravity, but it attempts to account for the feebleness of gravity by suggesting that the force particles responsible for gravity somehow have unique properties that must effectively weaken its strength. Because the particles that are imagined responsible for this, called gravitons, have thus far escaped all attempts to measure them, there has not been much progress made on this front.

      Both of these attempts are trying to treat gravity as though it were fundamentally the same as the other known forces, despite the fact that in the physical world gravity manifests itself as characteristically different. The motivation behind this comes from the desire to uncover deeper symmetries hidden in Nature and to use those symmetries to enhance our grasp of the natural realm. But what if there is a simpler way to unite the four forces? What if they are connected by a different kind of symmetry?

      The assumption that the vacuum is a superfluid could be the key to unification. If every force corresponds to a way in which the natural geometry differs from Euclidean geometry, then gravity can be understood to be unique among those differences because it is the only one that comes into focus macroscopically. That is, gravity is specifically offset from the other three forces because it arises as a small-amplitude collective excitation mode of the non-relativistic background condensate. In other words, it represents how the density of the vacuum slowly changes from one region to another, which necessitates a smooth representation that is only accurate in the low-energy, low-momentum regime.

      To understand why an accurate description of gravity is restricted to the low-energy, low- momentum regime, it is useful to be aware of the fact that fluid mechanics is an emergent consequent of molecular dynamics (within its low-energy, low-momentum limit). In other words, fluid mechanics is not a fundamental descriptor of any of the systems we apply it to. Those systems are actually driven by an underlying microphysics. Fluid mechanics exists only as an emergent approximation of the low-energy and low-momentum regime of the molecular dynamics that drive the system's evolution.

      Likewise, a velocity field (a vector field) and a derivative density field (a scalar field), which the Euler and continuity equations critically depend upon, do not exist on the microscopic level. They are emergent properties that are only resolved on scales larger than the mean free path and the mean free time.

      If the vacuum is a superfluid, whose metric is macroscopically describable by a state vector (a velocity vector field), then the density gradient of that fluid is an emergent approximation of the system instead of a fundamental descriptor. The cohesion of that approximation requires macroscopic scales, and molecular dynamics that are defined within the low-energy, low-momentum regime. Gravity becomes an expectation because, if the vacuum is a superfluid, if it can be modeled as an acoustic metric, then small fluctuations in that superfluid will obey Lorentz symmetry even though the superfluid itself is non- relativistic.

      The assumption of vacuum superfluidity fully reproduces expectations of compressibility (the ability for the metric to curve or warp), while projecting an internal velocity restriction. It also sets up an expectation of acoustic horizons, which turn out to be analogous to event horizons with the notable difference that they allow for certain physical effects to propagate back across the horizon, which might be analogous to, or responsible for, Hawking radiation. Therefore, if the vacuum is a superfluid, then gravity can be viewed as a macroscopic emergent expression, a collective property of the vacuum that supports long-range deformations in the density field. This small-amplitude characteristic is responsible for the feebleness of gravity.

      The strength of a force reflects the degree to which the geometric properties that author it contrast from Euclidean projections. Gravity is the weakest force because it only comes into focus on macroscopic scales, and therefore only slightly deviates from Euclidean expectations. The strong nuclear force, electromagnetism, and the weak nuclear force, are much stronger because they are all authored by geometric characteristics that deviate from Euclidean projections on even microscopic scales.

      Another way to put this is to say that metric distortions that qualify as gravity fields are inherently incapable of directly accessing the degrees of freedom that belong to the underlying molecular dynamics that drive the system. The metric distortion that leads to gravitational phenomena is capable of existing statically—the density gradient it represents is blind to the molecular dynamics that give rise to it—while the strong force, electromagnetism, and the weak force, are strictly sustained dynamically—they explicitly reference the underlying molecular dynamics. The magnitude of gravity (the degree to which this geometric distortion differs from the static Euclidean space) is, therefore, comparatively diluted. This is a consequence of the average-over process that gives rise to its geometry.

      Therefore, in as much as we consider underlying molecular dynamics to be an explanation of fluid mechanics (on low-energy and low-momentum scales), the assumption that the vacuum is a superfluid comes with a natural explanation for why gravity is so feeble compared to the other forces.

      I'll send you the book via email and look forward to further questions/comments.

  25. Lib says:

    I am completely untrained in science and math however I have been reading layman articles and listening to talks for many years. I just want to say i felt great appreciation for Thad and Co for their labors. The field of human intelligence is, I think, one field to which we all contribute. It is outside of time, though the process of human thought appears linear. I am somewhere in the renaissance, I can understand that the world is not flat and that the earth goes around the sun , despite the evidence of my eyes, and as I grasp the complexities of science and the new physics at an incredibly basic level, groping in darkness, I feel such kindness from the mind in this site, and such gratitude to it. How patient with others ! Quite exemplary of the self-organizing, cooperative intelligence at work.(I see it as the evolutionary life-force, once thought of as a Being outside the system). Thanks for helping the field along.

    • Thad Roberts dit:

      Hi Elizabeth,
      Merci de votre aide. We are trying to bring science back into the hands of those that have the courage to honestly ask questions, and to free it from the political pressures that have been strangling its potential. In science, it is never appropriate to justify a truth claim based on it being the claim of some “authority”. The logic should speak for itself. More importantly, we are individually responsible for our own participation in the quest for knowledge and wisdom. As you know, we can never be completely confident that the model we have of Nature is correct, what we can do is evaluate how honestly we have challenged every assumption, and rigorously test against all possible options. Our work is meant to be a guide in that process. It follows the thread of a particular model, one that offer immense ontological clarity, but its true aim is to empower each individual with the skills necessary to push our intellectual boundaries. It asks the questions that challenge our very foundations, and it offers insight into how we might rebuild that foundation. Anyone who reads this book will gain the ability to become a powerful part of the conversation.

  26. Jim dit:

    The flickering (or vibration) of particles of space and the averaging out on the large scale, feels kind of like the illusions of movie projectors – a consistent image appears to the eye, but if you inspect it more closely you realize there's far more to the story.

    The one thing that confused me about the model, was the idea of distance being the number of space particles. If that were so, it would seem that our three-dimensions are hoisted on top of the dimension of space-time, or, perhaps, are dependent on – an outgrowth of – space-time.

    • Thad Roberts dit:

      The idea is that the vacuum is itself a fluid, this measures of space measure amounts of that fluid between positions. I'm not sure what you meant by, “dependent on – an outgrowth of – spacetime.”

  27. Gururaj Bhat says:

    Salut,
    I'm a lay person but found your work very interesting. Can you please send a copy of your book?
    Merci
    Gururaj

  28. Sahil says:

    hey I am a student of physics and would love to read your book. Could you please send me a pdf copy

  29. stewart says:

    Thad, will you send me a copy of your book?

    Merci
    stewart

    • Thad Roberts dit:

      The book is now available via Lulu​.com (hardcover full color), Amazon​.com (softcover full color), or through iTunes (iBook). Vous trouverez des liens vers chaque ici.

      http://​www​.ein​steinsin​tu​ition​.com

      If you'd like a signed copy please let me know. Si vous ne pouvez pas payer le 14,99 $ en ce moment (pour l'iBook) envoyez-moi un autre message et laissez-moi savoir.

  30. Gene says:

    Hi – thanks for your work. I am a mathematician, and have done some work in higher dimensional geometry, but have little training in physics, and am not a scientist. I have a few questions.

    It seems you are proposing that the quanta are arranged within 3-dimensional space, and that the other 6 dimensions are somehow “within” the three (what I think you call superspace). Is that correct?

    If quanta 1 and 2 are separated by one plankton, and quanta 2 and three are separated by one plankton in a different dimension perpendicular to the first, would the distance between quanta 1 and 3 also be one plankton? In Euclidean geometry it would be the square root of 2. Am I totally off here?

    I assume that your model rejects the theory that the extra 6 dimensions are “curled up” in tiny amounts of curved dimensions around each quanta?

    Forgive me if these questions do not make sense. I appreciate your work and am looking to understand more. Merci.

    • Thad Roberts dit:

      Hi Gene,
      That's partially correct. The quanta of space collectively form the x, y, z vacuum of space that we are familiar with. This means that the arrangements of all the quanta at one instant defines the state of space for that instant, but that connectivity is not static. It evolves according to the wave equation as the quanta mix about. In your specific example, if quanta A and B are separated by one Planck length, then that means that one quantum of space lies between them. If B and C are perpendicularly arranged from A and B, and were also one quantum apart then they also only have one quantum between them. This is not a static condition. At some instances the state of space might find A and B two quanta apart, while others might find them with now quanta of space between them. At any rate, the number of quanta (the amount of space) between A and C would be a whole number (0, 1, 2, 3…) at any particular instant, but would average out to have a value equal to the square root of 2. Does that make sense? So, yes, at any particular moment the spatial separation between A and C might be one quantum of space, and an no point in time would it be the square root of 2, yet the average separation would eventually become the square root of 2.

      If you're interested in getting the book, it is now available via Lulu​.com (hardcover full color), Amazon​.com (softcover full color), or through iTunes (iBook). Vous trouverez des liens vers chaque ici.

      http: // www .ein steinsin tu ition .com

      If you'd like a signed copy please let me know. Si vous ne pouvez pas payer le 14,99 $ en ce moment (pour l'iBook) envoyez-moi un autre message et laissez-moi savoir.

      • Gene says:

        I have problems with the idea of quanta “mixing about” over time. It implies that each quanta is identifiable, and moves from location to location albeit in a “jumpy” fashion. But quanta are the definition of location, from what I understand. Does not “mixing about” imply another frame of reference to “locate” each quanta within 3D space?

        • Thad Roberts dit:

          Oui absolument. The quanta are positioned in configuration space, otherwise called superspace. The collection of these quanta fill out the dimensions of x, y, z or familiar space. When there are more than 3 spatial dimensions “location” become a more complex concept.

  31. Artax says:

    Bonjour Thad,
    I'm very happy because i discover you, i'd always thought “the problem is geometrical”, and so is the solution!
    I would be very grateful if you would send me your book,hopefully I will return the favor in the near future :)
    Merci
    Au revoir

    • Thad Roberts dit:

      Vous pouvez commander l'iBook, broché ou Relié à travers ce site. If you cannot afford either of these options let me know and I can send you a promo code for a free iBook.

Laisser un commentaire




Si vous voulez une image pour montrer avec votre commentaire, allez obtenir un Gravatar.