81

Samtal: Part One

Samtal: Del ett, lanserar. Detta är den första av sex konversationer "på kvantrymdteori (QST). I denna episod, Thad Roberts översikter kvant utrymme teorin, visar oss hur man visualisera elva dimensioner. Ingen annan teori (superteori, M-teorin, supergravitation, etc.) har kunnat erbjuda mänskligheten en sådan levande fönster i den fullständiga tredimensionella strukturen av naturen. Detta intuitivt förhållningssätt ger en ny bredd för människors fantasi och ger en fascinerande ny intellektuell vision som har potential att förändra världen genom att förändra det sätt vi ser det. Förmågan att förstå och intuitivt förstå elva dimensioner sätter scenen för att svara på de största mysterierna i fysik.

Kommentarer (81)

Trackback URL | Kommentarer RSS-flöde

  1. Nunya Bizness säger:

    Inget av vad du säger är sant. Jag kommer inte att ta tid att vederlägga allt den här videon, men låt mig säga detta:

    Allmänna relativitetsteorin är inte "fel", i den meningen att du påstår. Det är fel i den meningen att en mer exakt teori kommer en dag komma. Men det är i särklass den mest korrekta gravitationsteori som någonsin har lagts fram.

    Jag kommer att förklara för dig hur det fungerar, eftersom du uppenbarligen inte förstår.

    Allmän relativitetsteori (GR) tar vid där speciella relativitetsteorin tar slut; nämligen idén att tid och rum är en oskiljaktig enhet som kallas rumtiden. En självklar fråga är, "vad är geometri rumtiden?" Du kan anta att rumtiden är euklidiska. Du skulle vara fel.

    De grundläggande matematiska grunderna för GR är differentialgeometri, som är tillämpningen av flerdimensionell kalkyl för geometriska objekt. Via differentialgeometri, kan alla begrepp i ett utrymme geometri härledas ur ett matematiskt objekt, så kallade metriska. Metriken är en tensor som kan användas för att beräkna avståndet mellan två punkter i rymden. Så det metriska präglar helt geometrin av ett utrymme. Den euklidiska metriken för n-space är en nxn matris vars poster är alla noll, med undantag för diagonalen, där posterna är alla 1. Om du använder detta för att generera avståndet mellan två punkter i rymden, kommer du tillbaka den välbekanta Pythagoras sats: a ^ 2 + b ^ 2 = c ^ 2 (notera att detta är den 2-dimensionella versionen av sats, det kan generaliseras på det självklara sättet att någon dimension euklidiskt utrymme).

    Rumtiden är, till en mycket god approximation, euklidiska. Men för att vara mer exakt, är det inte. Detta blir särskilt tydligt vid mycket stora avstånd, till mycket stora hastigheter, eller i mycket höga gravitationsfält. Det metriska för rymdtid är identisk med den euklidiska metriken, med det undantaget att den diagonala post i kolumnen för tiden har motsatt tecken från resten av de diagonala poster.

    Vad är effekten av detta? Tja, är en välbekant sats från euklidiska geometri som det kortaste avståndet mellan två punkter är en rät linje. I rymdtid är detta inte fallet. På grund av de grundläggande resultat från speciella relativitetsteorin som jag inte kommer att härleda här (läs alla undergrad speciell relativitetsteori lärobok), är den tid mätt med en observatör beroende av väg han färdas genom rumtiden. Detta kallas den rätta tidpunkten. På grund av den icke-euklidiska karaktär rymdtid, är det kortaste avståndet mellan två punkter faktiskt det som minimerar den rätta tidpunkten. Med andra ord, zippa utanför kanten av galaxen i ljusets hastighet och sedan återvänder kommer att kräva mindre tid för dig i ditt rymdskepp än det skulle för mig att vänta medan du går på din resa. Detta är den berömda tvilling paradox.

    Hur som helst, är resultatet av detta att, genom variationsprincipen (som bör vara bekant för dig om du har varit utsatt för Lagrangian mekanik, vilket jag misstänker att du har inte ...), föremål i rumtiden tenderar att resa med den väg som minimerar deras rätt tid. Som tidigare nämnts, är rätt tid förkortas med resor med hög hastighet, eller att vara i ett gravitationsfält.

    Ta nu, som ett exempel, ett äpple på ett träd. Äpplet kommer att försöka minimera sin rätta tid. Detta kommer att ske genom att flytta till ett gravitationsfält - nämligen jorden. Detta resulterar i en attraktionskraft mellan äpplet och planeten. Med andra ord, framtiden för Apples worldlike pekar mot jordens medelpunkt.

    Det är hur tyngdlagen fungerar i ett nötskal. Det faktum att du inte vet detta kan förebygga din inkompetens att försöka arbeta inom detta område. Men det är din egen tid att förlora, antar jag ...

    • Geo säger:

      Så låt mig få detta raka ... Äpplet kommer att försöka minimera dess rätt tid genom att röra sig mot ett gravitationsfält och det är vad gravitation är (i en stark ontologisk mening). Varför Apple försöker minimera sin rätt tid? Vad är ett gravitationsfält? Vad är gravitation? Din kommentar har verkligen inte besvarat någon av dessa frågor eller ens bidragit till att klargöra dem. Allt du har gjort är föreskriva en magisk område som lockar äpplen.

      • Chandan Srivastava säger:

        kortaste distence kan vara åtgärd variationskalkyl.

        • Thad Roberts säger:

          Du har rätt att säga att kortaste avståndet kan mätas med hjälp av en kalkyl variations, så länge som det metriska vi talar om är slät och ansluten. I en kvantiserad metriska frågan kan få lite mer komplicerat.

          • Pierre Rousseau säger:

            "I en kvantiserad metriska frågan kan få lite mer komplicerat." - Thad Roberts.

            Det är därför en ytterligare komplikation gäller kvant kornighet som det gäller för alla objekt. Alla objekt percepts, inklusive koncept. Alla existentiell verklighet (medvetande) är fenomenologiska eller berättande. Felet är inte bara konceptualisering av det övernaturliga. Det är ännu mer akut perceptualization av supernarrative. Med andra ord, den anspelning på mystiska gudar och åkallan av animera personer som diskreta vilje föremål står i ömsesidig konstruktion.

            När det gäller differentialkalkyl. Det för inte börja ta upp frågan om tillvaron. Det är men en annan underhållande berättande skrynklas.

      • Peter Martin säger:

        "Vad är gravitation?" "Vad är en gravitationsfält?" Detta är pseudo "ÄR" frågor som till sin natur kan aldrig besvaras.

        Du kan njuta av att läsa om Society for Ganeral Semantics under ledning av Alfred Korzybski, som undvek påståenden och frågor vars huvudsakliga (eller endast) verb är en form av "att vara".

    • Jon säger:

      Till Nunya: allt du sagt är allt gott och väl, men du inte förklara en sak: vad är en gravitationsfält? Allmän relativitet förklarar effekterna av gravitation, men det ändå inte riktigt förklara vad gravitationen är. Som han säger i videon, vi har haft att anta att gravitationen är en kraft. Men om det är, varför är det så otroligt svag i jämförelse med de andra krafter? Relativitet är en stor teori för stora saker, men det förklarar ingenting på subatomär nivå. Åtminstone ger denna teori samma regler för hela universum på alla nivåer. Och det ger en stor förklaring av vad tid är.

  2. Nunya Bizness säger:

    Det är principen trögheten: ett föremål kommer att resa i en rak linje inte påverkas av en kraft. Definitionen av en "rak linje" är den väg som minimerar avståndet.

    Den springande punkten i GR är att utrymmet är inte platt, och att gravitation är en manifestation av skeva utrymme tid. Denna skevhet orsakar raka linjer (de som minimerar rätt tid) för att båge mot bitar av mass - med andra ord, föremål attraherar varandra.

    Allmänna relativitetsteorin är en mycket komplex teori. Vad jag har skrivit är en löjligt kort krasch-introduktion till den. Istället för att bara vara skeptisk allt och avskeda den ur handen, varför inte faktiskt läsa en lärobok om relativitetsteorin? Det är svårt att hävda att du har vederlagt Relativity utan att ens förstå det först ...

    • Geo säger:

      Först av allt, (är och jag inte Thad, så jag inte talar för honom) Jag är inte skeptisk till GR. Det har visat sig lika mycket som någon teori kan. I själva verket tror jag, är bredvid antika grekiska atomteori den viktigaste teoretiska (fysik) genombrottsmänskligheten någonsin har gjort. Som sagt, jag tror inte att det är komplett, inte heller Einstein själv. Vad jag tror inte att du förstår är att QST är ett tillägg till GR. Det är på många sätt, kvantiseringen av GR (från en kontinuerlig till en diskret system). Du verkar tro att vi kastar GR. Vi är inte. Thad inte namnge sin bok "Einsteins Intuition" ur trots, utan snarare av respekt. Om du hade brytt sig om att lyssna till vad som sades i videon skulle du har samlat det själv.

      För det andra posits QST precis samma idé, att gravitationen är en manifestation av skev rumtid. Men QST ger en konkret mekanism för att skevhet. Gravity är, bokstavligen, en förändring av densiteten hos utrymmet (en densitetsgradient). Jag tror inte att detta kastar GR ut genom fönstret. Snarare står det på de stora axlar både Einstein och hans teorier.

      Om du vill ha en kritisk, produktiv dialog om detta, Thad och jag är mer än villiga att göra det. Din antagonism och förvrängningar av QST, men är inte av intresse för oss.

      Skål,

      Jeff (Site Admin)

      • Nunya Bizness säger:

        Min poäng är inte att du bashing GR. It's that you are misunderstanding it, and consequently the conclusions you draw are incorrect.

        For instance, Thad says in the video that the commonly-seen “trampoline” diagram of GR is incorrect because it neglects an axis of space, and that we somehow need more dimensions of space to “stretch into” for GR to work. Of course that diagram is wrong – it's just a metaphor. It's only used to introduce the concept to laymen who, understandably, have a hard time grappling with a 4-dimensional pseudo-Riemannian manifold. To think that that simple model encapsulates the theory is a mistake. Space can warp without warping into another dimension.

        There are innumerable other issues that do not square with established mathematics and physics, such as the idea that pi represents a quantity of curvature (and that this is the minimum amount of curvature). Pi is a ratio; curvature is measured by directional partial derivatives.

        I'm not telling you to stop what you're doing. I'm telling you, as someone who is trained in math and physics, that if you're interested in these things, you're on the wrong track, and it isn't going to take you anywhere meaningful. I apologize if that's harsh, but the difference between true and false is very sharp. Which is why I implore you and Thad to study established physics like Relativity in depth (ie, mathematically) before you attempt to improve upon them.

        • Geo says:

          I appreciate what you are saying. I am not a mathematician or physicist, but rather an interested (and probably over-educated) lay person. However, there are several mathematicians and theoretical physicists working on the formalization of QST right now with Thad. They seem to think that there is something to it. These people are familiar with the theories and mathematics you speak of in your comments. They have done more than read the introductory texts you suggest. Not being an expert I must defer to them. That said, none of them have thrown their hands up and walked away after many months of work, rather they have become more convinced. They still feel there is something to be gained scientifically by their efforts.

          From a lay point of view, QST offers (to me at least) an explanation for a host of disparate phenomena (both macroscopically and microscopically) that resist explanation to this day. One of Thad's points is that a theory that doesn't provide an explanation, isn't much of a theory (that would be a jab at the standard interpretation of quantum mechanics which it richly deserves). I understand that until a full formalization is complete most of the scientific community will not give QST the time of day (and many won't even when that formalization is complete). But at this point, the theory is still testable in the laboratory of logic. Find a fault with its logic, its premises, its conclusions. That is where we are now. So far, to my knowledge, no one has disproven any of these theoretical abstracts of QST.

          Obviously there is still much work to do, but I believe (yes it's a belief) that a solid foundation has already been built. As they say, the devil is in the details, and those details are being worked out. The papers will be written. The peers will review.

          I'd invite you to read the whole book (which we can send via PDF if you'd like).

        • Jon says:

          Nunya, where have you been man? All of the groundbreaking new physics being done assumes that there are extra spatial dimensions. If you are so sure that GR is the be all end all, then explain quantum tunneling. Explain uncertainty principle. HE can't touch it. Einstein himself didn't believe that black holes really existed. We now have proof that there are millions everywhere. GR totally breaks down at the center of a black hole. We can't go forward if we're not willing to entertain the possibility of additional dimensions. Get with the program.

        • G-bolt says:

          You described mathematical explanations of forces. You explained how they behave without any inkling as to why.

          The warped space model is a layman's model, you can shed it as you accept the assumption that space can be curved in a manner we cannot perceive.

          The problem is that by definition for something to curve (or to change properties, there is no difference) in a manner which is imperceptible to us it has to be moving in another dimension. Changing any property is changing a 'dimension'.

          Imagining those dimensions in physical terms just makes their interactions easier to understand or at the least grants a fresh perspective.

  3. Johannes säger:

    I think (Nunya Bizness) has completely missed the message here. You are welcome to your opinion, but after reading over your comments it seems to me that you have mistaken the claims of quantum space theory. I know the formulation is not yet complete, but the foundational principles do have coherence.

    I am interested in your claim that “space can warp without warping into another dimension.”

    I find no substantial grounds for this claim. Låt mig förklara. To say that space can warp without warping into other dimensions is to say that you have a mechanism, an explanation, for how space might warp – not merely a description for how space is warped around massive objects. While It might turn out be the case that there are other ways for space to warp (other than warping into other dimensions), such a claim can not be substantiated until some sort of example is put forth. You can not simply say, look, space is warped because we've given space a metric that gives it the quality of being warped. Inventing a representation of a quality is entirely different from explaining that quality. As it stands right now (in modern textbooks) the very meaning of “warped space” is inaccessible. Of course you can use math to represent it, mimic it, copy it, or whatever, but that math does not necessarily mean that you have an explanation for its origin. Exactly how does spacetime warp without warping into another dimension(s)? That's the central question at hand. Quantum space theory says that it can't, but it doesn't push warped spacetime out of the picture, instead it clarifies how the warp comes about – vindicating Einstein in a way that would very much please him.

    Jag har läst en hel del mer än läroböcker du talar om. Jag har tagit klasser (både i matte och fysik) och gått sedan vidare. Om du har gjort samma sak är jag säker på att du håller med om att i de böcker de helt enkelt få folk att svälja "tarmar, fjädrar, och alla" idén att vi kan uppfinna ett fält från ingenstans så länge att fält ger resultat som matchar observation. Gravitationsfältet antas ge utrymme lite extra egenskap som är avbildningsbar av en tensor. Problemet är, och har alltid varit, att den enkla uppfinning i detta fält inte ger oss en förklaring till hur detta område trasslar med rumtiden, vad som orsakar det att komma till stånd, eller vad det egentligen är. Det är bara tas som brute att den existerar i samband med massa, utan nödvändiga skäl. Logiken här behöver lite förbättring. Den behöver också lite mer ärlighet. Einstein var väl medvetna om detta (finna denna förklaring var projektet som ockuperade sina sista 30 år). Även om det är sant att om du bara svälja det finns i detta fält du håller med om att raka vägar blir de stigar banor, men kvant utrymme teorin inte bestrider detta - det försöker förklara det. Teorin är helt enkelt be en annan, mer grundläggande fråga än du ger det kredit för. Det frågar varför och hur detta varp inträffar?

    Forskarna borde inte vara ute bara för en förening, vi borde vara ute efter ett orsakssamband, en förklaring. Det finns ganska betydande skillnad mellan föreningar och förklaring, ganska betydande skillnad mellan att ha en matematisk representation av ett system och en fullständig metafysisk förklaring till det systemet. Det är därför jag, och ett växande antal forskare, är intresserade av detta och, åtminstone i mitt fall, ägnar lite tid varje vecka för att utveckla den.

    • Nunya Bizness säger:

      "Jag vet att formuleringen är ännu inte klar, men de grundläggande principerna har samstämmighet."

      De gör inte. Till exempel: den bild som Thad använder i filmen ovan, med "bubblor" studsar om inte 11 dimensionell alls. Det är tredimensionell. De "bubblor" rör sig i tre dimensioner, och Thad hävdar att det finns tre dimensioner inuti bubblan. Det finns inget som skiljer insidan och utsidan av andra än bubblan vägg bubbla, så det finns ingen anledning att betrakta dem som separata världar.

      Alla dimensioner av ett givet utrymme är vinkelräta mot varandra (detta är ett mycket välkänt resultat av linjär algebra). Om du vill att föreställa 11-dimensionell rymd, måste man föreställa sig 11 linjer som alla är vinkelräta mot varandra. Du kan inte. Inte heller kan I. Det är omöjligt, och vårt misslyckande att föreställa det har absolut ingenting att göra med fysiken.

      "Jag är intresserad av ditt påstående att" rymden kan tänja utan att slå sig in i en annan dimension. "
      Jag finner inga väsentliga skäl för detta påstående. "

      Detta är inte ett påstående. Det är en matematisk sanning som är extremt självklart, även i verkliga livet. Ta till exempel, ett gummiband. Tänk dig att du bor på ytan av det bandet. Om jag sträcka ut det, kommer du att bevittna utrymmet omkring dig skevhet. Avståndet mellan dig och närliggande objekt ökar. Detta liknar vad som händer i rumtiden. Mått sträcka i sin egen riktning.

      "Låt mig förklara. Att säga att utrymmet kan tänja utan att slå sig in i andra dimensioner är att säga att du har en mekanism, en förklaring, för hur utrymmet kan varp -. Inte bara en beskrivning av hur utrymmet är skev runt massiva objekt "

      Nej, det följer inte logiskt. Att säga att utrymmet kan tänja utan att behöva andra dimensioner är ett uttalande som står på egna ben. Det är en geometrisk uttalande. Kärnan i det uttalandet, matematiskt, är att måtten är linjärt oberoende. Det säger ingenting om en "mekanism".

      I varje fall betyder GR posit en "mekanism". Nämligen, varptrådar materia rymdtid. Period. Titta på Einstein sätter ekvation. Bokstavligen, stress energi = rumtid krökning. Kanske finns det en djupare förklaring. Och som kommer att vara ett föremål för studie av nästa gravitationsteori. Men det enkla faktum är, GR vettigt, det har varit mycket (!) Förtalad genom experiment, och det ger en upplysande bild av vikt (den skevhet i rumtiden).

      "Själva innebörden av" skev space "är otillgänglig"

      Ett problem som QST förespråkare verkar ha är att de tror att alla i fysik ska reduceras till enkla "bilder" att varje lekman kan förstå. Det skulle vara trevligt om det vore möjligt, men det är inte. Fysik (särskilt på nivån QST försöker fungera) är extremt komplex, och det finns inget sätt att komma runt det. Det är därför människor som Einstein betraktas som genier; inte bara någon schmuck kan förstå det. Så, för att hjälpa fler människor att förstå, forskare förenklar ofta och upphäva sina teorier i mycket grundläggande idéer och metaforer (som trampolin modellen relativitets). Problemet är, kommer många människor förväxla detta metafor för själva teorin. De kommer att märka att modellen är bristfällig, och plötsligt de tror att de har gjort upptäckten av århundradet. Men modellen är utformad för att vara bristfällig, dessa brister tillåter modellen att vara enkel nog att förstå.

      "Exakt hur fungerar rymdtid varp utan att slå sig in i en annan dimension (s)? Det är den centrala frågan till hands. Quantum utrymme teori säger att det inte kan, men inte driva skev rumtid ur bilden, istället klargör hur varpen kommer till stånd -. Vindicating Einstein på ett sätt som skulle verkligen glädja honom "

      Först av allt, kan du inte tala för Einstein; Han är sedan länge döda. Andra, om QST hävdar att rymdtid kräver ytterligare dimensioner i syfte att förvrängas, sedan QST bryter Relativitet. Slutet av berättelsen. Relativitet beror i grunden på att rumtiden kan göra detta. Och GR är mestadels korrekt. Så om någon teori bryter mot denna idé (eller någon annan som upphäver GR helt) denna teori måste vara falsk. Det finns ingen tvekan om det.

      "Du kommer överens om att i de böcker de helt enkelt få folk att svälja" tarmar, fjädrar, och alla "idén att vi kan uppfinna ett fält från ingenstans så länge att fält ger resultat som matchar observation."

      Det är en filosofisk fråga här. Du har rätt att säga att det finns en skillnad mellan att förutsäga ett fenomen och faktiskt förklara det. En bra teori måste göra både och. Men du måste förstå två saker: 1) vetenskapen är en process. Den ursprungliga gravitationsteori (Newtons) erbjuds ingen förklaring alls. Men det var utmärkt på att förutsäga. Relativity förbättrade prognoser, och erbjöd en förklaring (krökt geometri). Du kan klaga över att förklaringen inte går tillräckligt långt, men det betyder inte att det inte är en förklaring. Nästa gravitationsteori kommer säkert att hålla mer insikt. Och 2) de förklaringar som en teori är inte alltid enkelt. Einstein * gjorde * förklara allvar, åtminstone till viss del. Men den förklaringen (när det ges i sin helhet) kräver användning av 4 dimensioner - något vi inte är vana vid. Det enda sättet att göra det verka enkelt är att skala bort en del av komplexiteten och talar metaforiskt om ett bowlingklot på en trampolin.

      "Den gravitationsfältet antas ge utrymme lite extra egenskap som är avbildningsbar av en tensor. Problemet är, och har alltid varit, att den enkla uppfinning i detta fält inte ger oss en förklaring till hur detta område trasslar med rumtiden, vad som orsakar det att komma till stånd, eller vad det egentligen är. "

      Merparten av detta inte ens vettigt. Gravity inte trassla med rumtid; Det ger inte rumtiden några konstiga egenskap. Gravity är krökningen av rymden, varken mer eller mindre. Det kan ses som ett område, som Newton gjorde; men relativitetsteori säger att det är geometri, och det är mycket mer exakt. Relativitet säger att denna krökning orsakas av massan. Om det är något djupare pågår här (som det inte kan vara!), Kommer någon gång i framtiden teori avslöja det.

      Den större frågan här är meningen med tillvaron. Det sätt på vilket forskning fungerar är genom att postulera en teori om ett fenomen; en förklaring. Denna förklaring ska vara tillräckligt bra för att ge en prognos (i modern tid innebär detta matte). Den givna förklaringen kan postulera förekomsten av saker utöver vad som för närvarande observeras (eller är möjligt att observera). Om teorin är sammanhängande, ger korrekta prognoser, och är så enkelt som möjligt (Occams rakkniv), kan det betraktas på någon nivå som är sant.

      För exemplet av gravitationsfältet, Relativitet: är gravitation krökning av rymdtid. Detta beräknas med Ricci tensor och mycket korrekta prognoser görs. Praktiskt taget varje förutsägelse av GR har verifierats experimentell gräns - och detta inkluderar, viktigast av allt, direkt mätning av rumtid krökning!

      Å andra sidan, QST: självmotsägande och osammanhängande förklaring av olika fenomen. Inga matematiska förutsägelser alls. (Pi är inte ett mått på krökning!) Inga experimentella förutsägelser, inga experimentella tester. Det misslyckas på varje greve. Det finns inget här.

      • Geo säger:

        Jag ska svara på varje avsnitt för sig (om jag missat något, John, vänligen kommentera själv):

        "Jag vet att formultion är ännu inte klar, men de grundläggande principerna har samstämmighet."

        De gör inte. Till exempel: den bild som Thad använder i filmen ovan, med "bubblor" studsar om inte 11 dimensionell alls. Det är tredimensionell. De "bubblor" rör sig i tre dimensioner, och Thad hävdar att det finns tre dimensioner inuti bubblan. Det finns inget som skiljer insidan och utsidan av andra än bubblan vägg bubbla, så det finns ingen anledning att betrakta dem som separata världar.

        Om du tar den ursprungliga axiom allvar då den här bilden inte utgör 9 dimensioner av rymden. Kvantisering institut själva restriktions som du ignorerar, så ditt klagomål väcker frågan.

        Alla dimensioner av ett givet utrymme är vinkelräta mot varandra (detta är ett mycket välkänt resultat av linjär algebra). Om du vill att föreställa 11-dimensionell rymd, måste man föreställa sig 11 linjer som alla är vinkelräta mot varandra. Du kan inte. Inte heller kan I. Det är omöjligt, och vårt misslyckande att föreställa det har absolut ingenting att göra med fysiken.

        Tekniskt sett "vinkelrätt" är en förenkling som används i elementär geometri. Den korrekta termen är ortogonala. Två delar av en inre produktrum passar definitionen av ortogonala om deras inre produkt är noll. Två underrum kan kallas oberoende dimensioner om de är ortogonala, och de är ortogonala om varje element i en är ortogonal mot varje del av den andra. För att uttrycka det enkelt, om rörelse i en inte innebär rörelse i den andra då de är ortogonala underrum. Ditt påstående att det är omöjligt att föreställa sig mer än 3 rymdmått är något som vi definitivt är oeniga om. Du har rätt att stanna kvar hos din nuvarande åsikt. (Tack vare min matematiker vän om hjälp här ...)

        "Jag är intresserad av ditt påstående att" rymden kan tänja utan att slå sig in i en annan dimension. "Jag tycker inte vägande skäl för detta påstående."

        Detta är inte ett påstående. Det är en matematisk sanning som är extremt självklart, även i verkliga livet. Ta till exempel, ett gummiband. Tänk dig att du bor på ytan av det bandet. Om jag sträcka ut det, kommer du att bevittna utrymmet omkring dig skevhet. Avståndet mellan dig och närliggande objekt ökar. Detta liknar vad som händer i rumtiden. Mått sträcka i sin egen riktning.

        Ok, låt oss ta exemplet på allvar. Tänk dig att vi alla lever på ytan av en som band, med undantag för dig naturligtvis eftersom du sträcker det. När du sträcka det och vi ser resten av universum som vi är medvetna om, som också finns med i bandet, vad kommer vi att se? Ingenting. Exakt ingenting. Vi sträcker i förhållande till resten av universum så allt verkar vara identisk på alla punkter till oss om du sträcka ut det. Den enda vägen ut ur denna slutsats är att föreställa sig att du som observatören, på något sätt lever utanför det utrymme som sträcker istället för att vara i den. I varje fall har du inte tagit upp bekymmer.

        "Låt mig förklara. Att säga att utrymmet kan tänja utan att slå sig in i andra dimensioner är att säga att du har en mekanism, en förklaring, för hur utrymmet kan varp -. Inte bara en beskrivning av hur utrymmet är skev runt massiva objekt "

        Nej, det följer inte logiskt. Att säga att utrymmet kan tänja utan att behöva andra dimensioner är ett uttalande som står på egna ben. Det är en geometrisk uttalande. Kärnan i det uttalandet, matematiskt, är att måtten är linjärt oberoende. Det säger ingenting om en "mekanism".

        Linjärt oberoende gör ingen lek här. Alla dimensioner, per definition, är ortogonala huruvida krökning är en del av beskrivningen. Du säger att "det kan tänja utan att behöva andra dimensioner" och sedan helt enkelt förklara hur. Du hävdar att det är möjligt att det finns något sätt för att detta ska ske, att det är åtminstone möjligt, så ge något att bekräftar detta.

        I varje fall betyder GR posit en "mekanism". Nämligen, varptrådar materia rymdtid. Period. Titta på Einstein sätter ekvation. Bokstavligen, stress energi = rumtid krökning. Kanske finns det en djupare förklaring. Och som kommer att vara ett föremål för studie av nästa gravitationsteori. Men det enkla faktum är, GR vettigt, det har varit mycket (!) Förtalad [sic] av experiment, och det ger en upplysande bild av vikt (den skevhet i rumtiden).

        Detta är en studie av nästa gravitationsteori. Vad tror du att vi har pratat om all denna tid? Naturligtvis allmän relativitetsteori vettigt! Det är nästan rätt också. Naturligtvis har det extremt verifierats genom experiment. Ingenstans har vi någonsin bestred detta. I själva verket vårt intresse för allmän relativitetsteori och utveckla ett sätt att göra det redogöra för effekterna av kvantmekaniken har varit motivationen hela tiden. Jag vet inte hur du fick idén att QST ställs mot den allmänna relativitetsteorin. Det är helt enkelt inte fallet. Vi är på jakt för att rättfärdiga den allmänna relativitetsteorin resten av vägen, att hitta sin grundläggande ontologiska förklaring och att visa hur geometrin som ger upphov till den vackra effekterna av den allmänna relativitetsteorin kan också kopplas till effekterna av kvantmekaniken.

        "Själva innebörden av" skev space "är otillgänglig"

        Ett problem som QST förespråkare verkar ha är att de tror att alla i fysik ska reduceras till enkla "bilder" att varje lekman kan förstå. Det skulle vara trevligt om det vore möjligt, men det är inte. Fysik (särskilt på nivån QST försöker fungera) är extremt komplex, och det finns inget sätt att komma runt det. Det är därför människor som Einstein betraktas som genier; inte bara någon schmuck kan förstå det. Så, för att hjälpa fler människor att förstå, forskare förenklar ofta och upphäva sina teorier i mycket grundläggande idéer och metaforer (som trampolin modellen relativitets). Problemet är, kommer många människor förväxla detta metafor för själva teorin. De kommer att märka att modellen är bristfällig, och plötsligt de tror att de har gjort upptäckten av århundradet. Men modellen är utformad för att vara bristfällig, dessa brister tillåter modellen att vara enkel nog att förstå.

        Du måste tillåta oss alla QST förespråkare för att stadigt hålla med dig här. Vi fortsätter att stödja Einstein på detta.

        "Det bör vara möjligt att förklara fysikens lagar till en barmaid." - Albert Einstein

        "Exakt hur fungerar utrymme Tidsresa utan att slå sig in i en annan dimension (s)? Det är den centrala frågan till hands. Quantum utrymme teori säger att det inte kan, men inte driva skev utrymme tid ur bilden, istället klargör hur varpen kommer till stånd -. Vindicating Einstein på ett sätt som skulle verkligen glädja honom "

        Först av allt, kan du inte tala för Einstein; Han är sedan länge döda. Andra, om QST hävdar att rymdtid kräver ytterligare dimensioner i syfte att förvrängas, sedan QST bryter Relativitet. Slutet av berättelsen. Relativitet beror i grunden på att rumtiden kan göra detta. Och GR är mestadels korrekt. Så om någon teori bryter mot denna idé (eller någon annan som upphäver GR helt) denna teori måste vara falsk. Det finns ingen tvekan om det.

        Naturligtvis QST bryter med relativitet, men endast på mikroskopisk skala, där varje framtida gravitationsteori måste bryta med den om den har något hopp om att vara rätt. Allmän relativitet är mestadels korrekt. Varför är du fortfarande försöker att kommentera denna som om vi är oense? Varje fullständig teori om gravitation måste hålla med den allmänna relativitetsteorin på små skalor och håller med är på stora skalor. Så enkelt är det. Einstein visste detta, ingen väg runt det, så jag är inte säker på hur ditt klagomål är tänkt att riktas.

        "Du kommer överens om att i de böcker de helt enkelt få folk att svälja" tarmar, fjädrar, och alla "idén att vi kan uppfinna ett fält från ingenstans så länge att fält ger resultat som matchar observation."

        Det är en filosofisk fråga här. Du har rätt att säga att det finns en skillnad mellan att förutsäga ett fenomen och faktiskt förklara det. En bra teori måste göra både och. Men du måste förstå två saker: 1) vetenskapen är en process. Den ursprungliga gravitationsteori (Newtons) erbjuds ingen förklaring alls. Men det var utmärkt på att förutsäga. Relativity förbättrade prognoser, och erbjöd en förklaring (krökt geometri).

        Vi kunde inte vara mer överens.

        Du kan klaga över att förklaringen inte går tillräckligt långt, men det betyder inte att det inte är en förklaring. Nästa gravitationsteori kommer säkert att hålla mer insikt.

        Och exakt vad tror du vi gör här. Detta är vår punkt. Detta är anledningen till att vi arbetar med detta.

        Och 2) de förklaringar som en teori är inte alltid enkelt.

        Du har rätt. De är bara enkla när de är fullständiga och korrekta.

        Einstein * gjorde * förklara allvar, åtminstone till viss del. Men den förklaringen (när det ges i sin helhet) kräver användning av 4 dimensioner - något vi inte är vana vid. Det enda sättet att göra det verka enkelt är att skala bort en del av komplexiteten och talar metaforiskt om ett bowlingklot på en trampolin.

        Att se det för vad det är i stället för att bara delvis förklara det kan göra det enkelt också. Naturligtvis studsmattan är endast avsedd som en metafor. Naturligtvis Einstein skulle ha gått med något bättre om han hade lyckats hitta den. Försöker du hävda att eftersom Einstein är död ingen ska fortsätta driva på för en mer fullständig förklaring?

        "Den gravitationsfältet antas ge utrymme lite extra egenskap som är avbildningsbar av en tensor. Problemet är, och har alltid varit, att den enkla uppfinning i detta fält inte ger oss en förklaring till hur detta område trasslar med rumtiden, vad som orsakar det att komma till stånd, eller vad det egentligen är. "

        Merparten av detta inte ens vettigt. Gravity inte trassla med rumtid; Det ger inte rumtiden några konstiga egenskap.

        Krökning är ett kännetecken.

        Gravity är krökningen av rymden, varken mer eller mindre. Det kan ses som ett område, som Newton gjorde; men relativitetsteori säger att det är geometri, och det är mycket mer exakt. Relativitet säger att denna krökning orsakas av massan. Om det är något djupare pågår här (som det inte kan vara!), Kommer någon gång i framtiden teori avslöja det.

        Den större frågan här är meningen med tillvaron. Det sätt på vilket forskning fungerar är genom att postulera en teori om ett fenomen; en förklaring. Denna förklaring ska vara tillräckligt bra för att ge en prognos (i modern tid innebär detta matte). Den givna förklaringen kan postulera förekomsten av saker utöver vad som för närvarande observeras (eller är möjligt att observera). Om teorin är sammanhängande, ger korrekta prognoser, och är så enkelt som möjligt (Occams rakkniv), kan det betraktas på någon nivå som är sant.

        Exakt. Känn dig fri att rikta sig till de allmänna förutsägelser som härrör från denna geometri. Om din attack är att det inte finns några "exakta" förutsägelser ännu, på grund av det faktum att vi inte har avslutat den fulla matematiska formuleringen av geometri, då man knappt har någon verksamhet talar om för oss att sluta arbeta på matten av teorin.

        För exemplet av gravitationsfältet, Relativitet: är gravitation krökning av rymdtid. Detta beräknas med Ricci tensor och mycket korrekta prognoser görs. Praktiskt taget varje förutsägelse av GR har verifierats experimentell gräns - och detta inkluderar, viktigast av allt, direkt mätning av rumtid krökning!

        Självklart har. Det är helt klart att du är helt förvirrad om krav och mål i denna nya teori. Du är fast beslutna att hetsa den mot allmänna relativitetsteorin istället för att se det som en ontologisk validering och anhängare av den allmänna relativitetsteorin.

        Å andra sidan, QST: självmotsägande och osammanhängande förklaring av olika fenomen. Inga matematiska förutsägelser alls. (Pi är inte ett mått på krökning!) Inga experimentella förutsägelser, inga experimentella tester. Det misslyckas på varje greve. Det finns inget här.

        Ja, kan pi lätt användas som ett mått på krökningen. Gå tillbaka och kontrollera din matte. The ratio of a circle's circumference to its diameter will change when you put it in a space with the Ricci tensor. Uninformed assertions are not questions. If you have questions feel free to ask. If your agenda is simply to push your conviction that a theory that you won't hear out must be wrong, because you've already decided before reading it that it conflicts with general relativity in a way that it shouldn't, then this is really not the place for those kinds of rants.

        Thanks for you questions. We shall continue our calculations and work (despite your suggestion that an already complete mathematical formulation is the only kind anyone should work on).

      • Jim säger:

        If dimensions stretch in their own direction, how would one know they stretched?

        • Thad Roberts säger:

          I'm not sure it means much to say that a dimension stretches in its own direction. To define “stretching” in a meaningful way we need to reference a property that changes in reference to another dimension. If you are pointing out that if the universe of x, y, z space has been stretching/expanding, in the way often visually modeled on a balloon to explain the redshift we measure and connect to dark energy, then you are right to point out that this popular model actually doesn't provide a coherent explanation of stretching. If, on the other hand, one region of space “stretched” more or less than another, it would leave geometric distortions (curvature) that could be detected.

  4. Me says:

    Rather than writing a lengthy response, allow me to just point out a number of falsehoods I have seen involved with QST, and ask how they are to be resolved.

    Pi represents the smallest amount of curvature possible in spacetime. (Russian character) represents the greatest amount.

    QST is 11 dimensions even though real space is 3 dimensions, the inside of the “bubbles” is 3 dimensions, and the space the “bubbles” move through is 3 dimensions, and there is nothing separating those regions from one another.

    A quantum of something is the smallest possible unit of that thing. A quantum of space is a “bubble” beyond which there is no definition of space. Yet, there is space inside the bubbles, somehow.

    Gravity is represented as the density gradient of space quanta. But gravity is caused by matter. Matter is not space. How does this even make sense?

    Time is the resonation of space quanta. Varför? Hur? What reasoning leads to this conclusion?

    If there are 11 dimensions, why can't we see them? String Theory says the extra ones are curled up extremely small. QST seems to have extra dimensions just sort of… floating out there…

    • Geo says:

      Let me address these questions as best I can one by one:

      “Pi represents the smallest amount of curvature possible in spacetime. (Russian character) represents the greatest amount.”

      [The Russian character is “Zhe”]

      In general relativity the ratio of circumference to diameter goes to zero whenever black holes are in the region whose curvature is being described (because the denominator, the diameter of the circle centered on a black hole, goes to infinity if spacetime is continuous and black holes are zero sized). Quantum mechanics has a problem with that infinity in the denominator. It conflicts with general relativity on this point and cuts off this infinity with its claim that the smallest distance in space is the Planck length. Qst agrees with this claim and its geometry offers us a way to quantitatively determine an expression for the maximum curvature that is instituted by that cut off. Why is this interesting? It is interesting because, if it is right, then it means that there are two dimensionless numbers inherent in the geometric map of spacetime, combined with the five Planck values that result from the quantization. This takes us to something even more interesting… Whatever this other geometric number is, its value has to be between zero and pi. Narrowing it down more there is strong expectation that it is between 0 and 0.7. So the claim of this geometric model is that there is some number between 0 and 0.7 that, can be combined to the 5 Planck parameters, and pi, to nonarbitrarily produce or “encode” the geometric effects that are inherent in spacetime – the constants of Nature. As it turns out there is such a number, and it happens to fall in that range. (See the constants of Nature page on this site.) This is significant enough to warrant current efforts to theoretically derive the exact value of this number from geometric considerations.

      “QST is 11 dimensions even though real space is 3 dimensions, the inside of the “bubbles” is 3 dimensions, and the space the “bubbles” move through is 3 dimensions, and there is nothing separating those regions from one another.

      A quantum of something is the smallest possible unit of that thing. A quantum of space is a “bubble” beyond which there is no definition of space. Yet, there is space inside the bubbles, somehow.”

      I'm not sure I understand this question (correctly), but I'll take a stab at it. The first paragraph is sort of what QST is postulating, with several important caveats. Firstly, the space between our everyday quanta of space is not space per se, we refer to it as superspace, and likewise the space within the quanta of space is referred to as intraspace. If space is quantized these other spaces (super and intra) manifest (if you allow that a quantum of space is a volume rather than a point). If the quanta of space are in fact volumes, the two other sets of “spaces” are necessary and distinct from normal space. The analogy of the bar of gold comes to mind. If you split a bar of gold down to its smallest components, components that can still be considered gold, you will reach a point where you could continue to split the constituents (atoms in this case) further, but what results from this further splitting can no longer be considered gold. In this analogy, you have transcended the meaning of “gold” by splitting the gold atom but, as we now know, there is a whole lot more splitting that can be done. You can't count units of gold by counting neutrons, for example. Good question though. Wrestling with this issue is at the core of understanding what it means to say that the fabric of x, y, z space is quantized. The rest of the picture won't make sense until this is intuitively absorbed. Is this getting at what you're asking?

      “Gravity is represented as the density gradient of space quanta. But gravity is caused by matter. Matter is not space. How does this even make sense?”

      First of all, yes, absolutely, gravity is represented as the density gradient of space quanta. The question you might be trying to get at is, what causes these density gradients to form? When the quanta stick together density gradients build up around those conglomerates. All forms of energy that manifest in x, y, z, t are simply geometric distortions in spacetime. Density waves could ripple through the medium – that's one way of supporting a geometric distortion. (Something like this would be said to have energy that is equivalent to some amount of rest mass, but it cannot exist at rest itself.) Another way is to have a stable geometric distortion is to have quanta that are stuck together. Once a group of quanta are stuck together, the individual quanta around it, moving around and, for the most part, ellastically interacting, will form a density gradient because of momentum conservation. A single quanta bumping into two will leave the two moving much slower than the original one. Slower motions concentrate around the clump, and, slower motions create greater densities. So permanant, or at least stable geometric distortions, like quanta sticking together, is mass in this model.

      “Time is the resonation of space quanta. Varför? Hur? What reasoning leads to this conclusion?”

      This is a great question and it could use some more investigation. As it stands now, we might say that the fact that the familiar dimension we call time can progress at different rates suggests that time is associated with one special motion, instead of all motions. What is that motion? According to qst that motion is the resonations of the space quanta. This gives us a way to have ontological clarity on what it even means to say that less time has passed in one region than another. Such a claim is rather incoherent without something for comparison. In other words, without this sort of explanation we still run into the problem that everywhere in the universe time passes at a rate of one second per second. That's a great source of confusion unless your comparison is not self-reflective. Here we become able to understand the progression of time, at all locations in space, as something that can be defined in relation to supertime. This needs much more elaboration, but it is definitely a valuable start.

      “If there are 11 dimensions, why can't we see them? String Theory says the extra ones are curled up extremely small. QST seems to have extra dimensions just sort of… floating out there…”

      First of all, it should be noted that string theory's reason for why we can't see these extra dimensions is exactly the same in QST. In fact, we can see effects that the existence of these dimensions dictate. Put the other way around we see effects that are baffling to us (quantum mechanics in general and a few others) and they find no solution or cause unless we intuit extra dimensions. This question does not separate qst from string theory. These other dimensions would be plainly visible if we could look at things at the planck length. But we can't (yet?). So we don't see them.

      I hope this at least clarified things a bit. Please let me know if I've misinterpreted your questions.

      • Jon says:

        I have a couple of questions. If I understand this right, this theory would predict that the legendary graviton will never be found, correct? Because if gravity is not a force, then there will be no force particle, right? Also, how does the Higgs field enter into all this? I don't really see room for it in this model, but then again I am not a physicist. Can you clarify?

        • Thad Roberts säger:

          Jon,
          Yes you are correct, this does predict that the graviton does not exist. As for your other question, I've posted a response to Peter in the “Questions and Answers” section that should clarify the issue with the Higgs field for you. :-) If you still have questions after reading that please let me know.

  5. Phyn says:

    First thing I have to say is that I think it's awesome that Thad thought up this theory and is putting it forward. This kind of forward thinking is needed in the physics field these days, and I myself hope to do the same in the future.

    It is definitely an interesting theory, but I do have a few issues with this video, at least (some may arise from my ignorance):

    1. Thad claims that the general interpretation of the 4th spatial dimension is just as a mathematical trick to account for gravity. But that's a false claim. Most physicists do work that is not affected by whether gravity is a force or another dimension. So they may use a false interpretation, but because it would just complicate things for them without doing anything for them. The physicists that do work with space-time, astrophysicists and cosmologists, do need to know exactly what gravity is and they do define gravity as the 4th spatial dimension, not a force.

    2. Mass warps the 4th spatial dimension. So using the metaphor of weight warping a trampoline is perfectly valid.

    3. Thad claims that the Planck length bubbles move around. Varför? Shouldn't space be a rigid structure, a grid? If the quanta of space move around like air particles, they would obey something similar to statistical mechanics. That means there is a non-negligible chance of having large clumps of quanta and large sections that lack any space at all. And with Thad's definition of time those sections would also move faster or slower through time. Note that these sections would arise for no reason at all besides the probabilistic nature of quanta of space-time moving around and bumping into each other. This is most certainly not seen in the universe.

    4. Thad's argument for extra dimensions has an inconsistency. If the Planck length is the smallest distance that can be measured or defined, it makes no sense to define new dimensions to explain position on smaller than the Planck scale. They mean nothing on both a human, mathematical level and on the level of the physics of the universe.

    5. I understand that there's much more to this theory, but Thad fails to explain how or why matter and energy as we see it now affect the quanta of space. I'm assuming this is explained further into the theory. Also, how does light fit into this theory? Light always travels at c, although with this theory that would suggest that light is somehow separate from this 11 dimensional space. (Personally, I have no issue with that idea and have had the same thought myself. But it does need to be accounted for.)

    6. If the Planck length scale is so much smaller than any particles, how is it possible for quantum tunneling to occur? It seems very unlikely for an electron to move through super-space without hitting another quanta of space for a distance over 10 orders of magnitude larger than the Planck length. Sure, it may happen every now and then, but the probability would be much smaller than what is seen now.

  6. Thad Roberts säger:

    Phyn,

    Thank you for your comments and questions. Let me try to address some of your comments as best as I can.

    1. My comments about gravity that you are referring to were meant to be in reference to a visual model of gravity, not to the equations physicists use to represent it or to what they hold to be true about gravity. Because they have worked for so long under the restraints of Euclidean (or even non-Euclidean but continuous) metrics, physicists use a reduced dimensional representation. You are correct in pointing out that this does not mean that they do not attribute the existence of gravity to be the result of an interplay with another spatial dimension. What I am after is an intuitive and accurate model, a new representation, for the geometry of Nature that gives us full intuitive access to things we currently do not have intuitive access to. In other words, my point is that the 'rubber sheet' diagrams do not give us FULL intuitive access to what gravity is, why is has the properties it has, and so on. My goal is to come to a model that does give us that access.

    2. The notion of weight sadly plays off of our intuition that something with weight is pulled down by gravity. I'm perfectly fine with saying that the presence of mass warps the trampoline, but as soon as we say make our representation based on the concept that it is its weight that warps the trampoline, we have now used some notion of gravity (weight equals strength of gravity multiplied by the mass) in our answer for what is gravity. This reduces the utility of our answer. Det var min poäng. I am not mocking the value of the trampoline in any way. I love that it is an attempt to be a model that we can access to at least partially gain an intuitive understanding of how gravity works. I'm just looking for a model that goes a bit further.

    3. Technically I'm not actually claiming anything (nor is anyone else working on qst). We are, however, hypothesizing about the geometry of spacetime and seeing where our hypothesis leads us. We are setting some axioms up for space and checking to see if those axioms set up a system that naturally contains that which we currently call mysterious. As scientists we understand that our current set of axioms might turn out to be incorrect, but so far they are leading us to something quite promising. In addition, we believe, as you appear to, that even if we end up proving that our set of axioms do not mimic the construction of the Nature's fabric, exploring new ideas is what science is all about. Right or wrong, there is a lot to learn from the process we are undertaking.

    You are correct in noting that our current assumptions about the structure of x, y, z space depicts the quanta moving around, which makes its representation something akin to statistical mechanics (hence the many quantum mechanical effects that we see in Nature). I'm curious as to why you think that the structure of spacetime should somehow be constrained to being a rigid grid. In the end you may be right about spacetime having this property, but at this point I see no reason to assume this as a brute contraint. Also, the point you made about having sections of space that will evolve at different rates through time is absolutely correct, however it only applies to very small scales (unless a macroscopic density gradient is present = curved spacetime). As we move to macroscopic scales (like 10^-25 meters, or 10^-34 seconds) these effects are washed out for the same statistical reasons you pointed out earlier.

    4. I apologize if I misspoke or caused a confusion on this point. In our system the Planck length is defined as the smallest quantum unit of x, y, z. Just as a gold atom is the smalls unit of a chance of gold, a quantum of space is the smallest unit of any x, y, z volume. It does makes sense to talk about less than one gold atom, or to visualize splitting a gold atom, but it does not makes sense to continue calling what you end up with a fraction of a gold atom. Once you go smaller than one gold atom you have transcended the definition of gold. You do not have gold any more in any sense. At this point you are forced to recognize that what you have is something completely different from gold. The same applies for our geometric system. Since we have set up an axiom space that defines the medium of x, y, z as being composed of quanta, comprised of base units, we cannot talk about smaller units and still be talking about anything in the x, y, z realm. This, however, does not inhibit us from talking about something smaller. It just requires that when we do we recognize that we are talking about something else. In as much as we are talking about spatial dimensions, positions within a single quanta occupy different superspatial positions, but those different positions do not reflect upon the x, y, z metric. The geometry is quite interesting mathematically because it is a wholly invertible map. In other words, it is a perfect geometric fractal. As it turns out, this system also appears to comes with a few properties (like the statistical character you mentioned before) that are quite suggestive of quantum mechanical effects.

    5. Stora frågor. As a short answer: matter is any stable (on whatever scale you choose to define as long enough to count as “stable”) distortions in the geometric arrangements of space quanta. For example, if two quanta stick together like bubbles for a long period of time before being separated by other collisions, then they represent a geometric kink for that period of time. This kind is mass. Energy can be thought of as distortions that are not stable without propagation. A density wave for example can travel from point A to point B and be thought of as stable during propagation, but it cannot retain itself without propagating through the medium.

    Light does always travel at c, in the x, y, z medium. Wave speeds of a particular medium change as the density, pressure, temperature of that medium change. So from the eleven dimensional perspective waves that travel through the medium will be resolved as having speeds that depend upon the density of that medium. However, compared to the medium itself this speed is non-variable. In other words, from the internal x, y, z perspective the speed of light is a constant. Perhaps I am missing the thrust of your point/question. Please elaborate if I have not addressed your concern.

    6. Technically the electron is defined as having a zero sized radius. Since quantum mechanics restricts the minimum size to the Planck length we might think that “zero” really means one Planck length. I'm not sure where I stand on this specifically. But I will say that the probability for electrons to sail through the medium without interacting much is quite large if it is even close to one Planck length.

    Thank you for your insights, thoughts and questions. I personally wish you luck as you pursue your own development of a TOE. If you keep asking questions like these I'm sure you'll make a big impact on the world.

    Thad

    • Phyn says:

      Thad,

      Thanks for the quick response and clearing up my comments/questions. I do have a few more about your reply. (I'll try to number them to match the previous numbers)

      3. This might just be from my lack of knowledge/experience, but isn't there a non-negligible probability (using statistical mechanics) that a region could form with a very high density of space quanta or a very low density? Looking back I realize now the probability of such a region forming on any detectable scale is highly unlikely, but there is some chance. So there could be a region or regions in the universe that act like a black hole (or the inverse of that) without any energy or mass having caused it. Or am I stretching how likely such an event would be?

      4. I think what I was trying to ask with this question is why the three dimensions that are defined within the quanta are necessary?

      5. My questions about light basically pertains to how light is different than matter in your theory. If light also travels through super-space and space quanta, why is it still seen as traveling at c at any velocity the observer is at? As I understand it, the reason light always travels at c is because special relativity has an asymptotic behavior. Time dilation and space contraction go to infinity as velocity goes to c. I can see that in your theory the behavior would be exponential, but it's not clear to me why it would also be asymptotic. Light would still pass from space quanta to super-space to space quanta, so wouldn't it still experience some time and space? Sorry if I'm not being clear.

      Also, I was wondering about how your theory fits with super-inflation theory. Can space quanta be created/destroyed? I assume not and if so does that mean the universe before super-inflation was in a sense a super black hole? In this theory was super-inflation just an expansion if these very dense region of space quanta? Or do you have some other explanation? Along similar lines, do space quanta have a speed limit? If they do, what is it? If it is c how would you account for the super-inflation event?

      Tack igen,
      Phyn

  7. Thad Roberts säger:

    Phyn,

    Stora frågor. :-)

    3. Yes, due to vacuum energy there is some probability that matter, or for that matter even a macroscopic black hole, could form without any previous forms of matter leading to its formation. However, to say that it formed without any energy having caused it may be a bit of a stretch. If we restrict our definition of energy to specific forms, like light or baryonic matter, then we can say that. But such a restriction seems a bit artificial to me. The inherent energy of the quanta of space bouncing around and interacting with each other would be responsible.

    4. Within a quantized metric the three intra-spatial dimensions are necessary for defining position more accurately than x, y, z dimensions allow. On a more metaphysical level (the philosophical definition of metaphysical not the new age one) they also allow us to access the actual structure of the Universe and how that structure is responsible for how things are. If we ignored them then we would be missing part of the picture. And interpreting a system from a reduced construction can lead to confusion. Technically the eleven-dimensional construction is also only an approximation. The next level of increased accuracy is a axiomatic metric of 30 dimensions, then 85, then 248 and so on. The full picture unveils as a fractal, and that full structure gives us even richer access to questions that reach beyond the confines of our local system (the Universe = all the space connected by the last Big Bang).

    5. This question is rich and worth some time. Perhaps you would be interested in reading the preprint of my book? Chapter 8 – The Speed of Spacetime explains in detail why the speed of light is constant according to this geometry, and why Lorentz contraction and time dilation occur. Your question might be more fully addressed in there.

    If I am understanding your question correctly, then it might be worth pointing out that according to the definitions set up in our construction a quantum of space does not experience time expect in whole number increments of the Planck time. However, the quanta do still experience supertime as they move through superspace. This means that things can move from quanta to quanta as we the observers move through time, but since the passing from one quanta to another involves the elastic properties of the quanta (and so does the passage of time), the fastest something can move through x, y, z space is such that the number of quanta it has moved is equal to the number of chronons in time that the observer has aged. This thing/energy moves through x, y, z space but it does not move through time (because it does not experience any independent resonations). It changes position in space and the observer moves through time by an equivalent number of quantum values. So anything moving in this fashion does move through space, and then superspace, space, superspace, and so on, and all along through supertime, but it does NOT move through time. It does, however experience supertime. Is that what you were getting at?

    Also, as per your question about inflation… I believe that qst does not have expectations that space ban be created or destroyed. The Big Bang, in this model, occurs because another universe outside of the system of our universe collides with our universe. The structure of our universe (the arrangements of the quanta of space) is altered in response to this such that all of the quanta are pressed together. The complete system is a collection in which there are no independently acting quanta (hence it acts as though there were only one location in the entire Universe and of course no time). This is very close to the picture of a black hole, only a real black hole forms internally from a loss of energy, this forms from energy from outside the system so it is not a stable configuration. Then, when the two systems rebound off of each other their internal constituents begin to separate, causing there to be more than one uniquely acting location within each. So each universe goes from having effectively one unique location and no time to having many many uniquely behaving locations and some time in a very short burst (whether you measure it by time or supertime). Chapter 29 deals with this topic in much greater detail should you desire to read it.

    I hope that helps.

    Please remember, even if this theory eventually ends up jiving very well with what we know so far, and gives us more of an explanation that any other construction, it doesn't mean that it is right or that we shouldn't all keep asking questions and thinking up new ways of seeing things. Climbing beyond our current edge of understanding is what it is all about.

    • Phyn says:

      Thad,

      Thanks for the answers. I think that clears up the questions I have right now. I just requested a pre-print copy of the book and can't wait to delve deeper into this theory. And I completely agree that we always need to keep questioning.

      Phyn

  8. Stephen says:

    This question is for Thad, or for whomever can answer it. I'm really impressed with all of this. It's definitely very convincing and I'm really looking forward to seeing how this is either supported or refuted within the scientific community. The main question I have though, is how does QST play into the emergence of the forces during the first moments of the Big Bang? I know that theoretical physics holds that the fundamental forces emerged as a consequence of the Big Bang and were not immediately present at the inception of the universe. I'm just wondering if QST affords a comprehensive explanation for this. If there is would you mind sharing that with me? Also, if there isn't a comprehensive explanation, could you explain how they figure that the fundamental forces were not present at the genesis of the universe?

    Also, I've been searching the web and haven't really been able to find a lot on QST other than on your website. I'm just wondering why such an interesting idea hasn't taken hold in the scientific community and why no one has openly talked about this theory of yours. Do you know why this is the case? I'd love to hear more about this. I've been gobbling up your website watched both your conversation pieces and the TED talk, which will hopefully make these ideas more public, and I'm really excited by the prospects of QST and what it can mean for the breadth of human knowledge.

    • Thad Roberts säger:

      Dear Stephen,

      Thank you for your message.

      First off, let me apologize for the late response. I have been at the bottom of the Grand Canyon, exploring a land full of mysteries and beauty. It was an amazing experience.

      Som svar på dina frågor:

      We share your excitement and curiosity about this theory, and look forward to seeing how it with be either supported or refuted by science. We might, however, point out that this is different from being excited about refutation or support from the current scientific community. Because science is made up of a compilation of research programs, it is an active social entity – carrying several social pressures that can lead it astray in any given point in time. Nevertheless, because science is a self-correcting machine, over the long haul it will correct itself toward a more clear and accurate picture. That is to say that if the current climate in the scientific community was such that it immediately accepted qst, this would not in and of itself provide concrete support that qst is an accurate reflection of Nature. Neither would its immediate rejection (there are several historical examples of theories that we now accept that were rejected by the scientific community at large in the time (and social climate) that they were first proposed in). What really matters is – does qst accurately map the true structure of Nature? We are hopeful that we will secure a clear, non-biased answer to that question in time.

      You asked how qst plays into the emergence of the forces during the first moments of the Big Bang… The answer is a beautiful example of how qst gives us incredible intuitive access to rather complex ideas. First, let me note that current thought suggests that as we run the clock back toward the Big Bang, there are symmetries that go from broken to unbroken. Translating this into English, this means that as we approach that first moment we go from having distinctly recognizable forces (four of them) to forces that merge in their descriptions. As we approach the first moment (after the Big Bang) all four forces gain complete symmetry with the background metric. They can no longer be teased apart in this state. This special axiomatic state of the Universe is responsible for the fact that the forces are no longer indistinguishable from the metric.

      In qst, this situation is made more clear. In this model it is suggested that in that first moment, all the quanta that make up our universe were compressed together (by an external collision by another universe). Because of this there were no uniquely acting quanta (locations) in the universe in this moment. The whole collection acted like a singularity, but instead of reaching this state by losing energy and maximizing entropy, it represented a highly energetic state with minimal entropy (because of its external cause). Because all the quanta acted in unison, there was in effect, only one unique x, y, z location at this point in time. The significant result of this geometric condition (as per our current discussion), is that it was not possible to have spatial density gradients in this moment, nor was it possible to have any waves propagating through the x, y, z medium, or little whirlpools of mixing, etc. The entire axiomatic set of quanta were rigidly locked together. This is why there were no distinguishable forces from the background metric. As the rebound occurred, and the quanta that make up the x, y, z volume of our universe began to separate, the number of independently acting locations in the universe exponentially multiplied, and the geometric distortions that we refer to as forces became geometrically possible.

      Please let me know if that helped.

      About your question about why qst has not taken hold in the scientific community yet… a little background might help here. Scientific progress is a messy thing. In part, this has to do with the demarcation problem (the task of being able to identify scientific endeavors from pseudoscientific endeavors). Karl Popper famously tried to help speed science along, and overcome this problem, with the suggestion that what makes something science is that it is falsifiable. This has been a popular criterion of science ever since. I am certainly drawn towards the claim that a theoretical construct should make claims that can be falsified before we put our full trust into it. However, as has been pointed out, Popper's criterion cannot actually distinguish scientific endeavors from pseudoscientific ones. There are fields that we all feel comfortable labeling pseudoscientific that make falsifiable claims. But more importantly, all fields considered scientific rest on axioms, assumptions, and non-falsifiable statements that play a fundamental role in their construction. If we are expected to abandon all theories that contain non-falsifiable statements, then there would be no identifiable sciences at all. In response to this some have grasped for the idea that there is some sort of art to picking the axioms beneath a theory – those that perform that art too loosely fall out of the range of science. This idea lead Thomas Kuhn to conjecture that what it meant to be scientific was to conform to the current scientific paradigm. In this view science becomes merely a social construct that shifts with the tides of time. Paul Feyerabend and Imre Lakatos later wrestled with these issues and came to the conclusion that science is not an autonomous form of reasoning, but is inseparable from the larger body of human thought and inquiry. They determined that because science is a human endeavor questions of truth and falsity are not uniquely empirical.

      All of this has led to the general recognition that the demarcation problem is intractable. In response Paul Thagard has suggested that we alter our focus and deem a theory as non-scientific if it satisfies the following two conditions:

      1 – It is unpromising: The theory has been less progressive than alternative theories over a long period of time, and faces many unsolved problems: and
      2 – It doesn't adhere to the Scientific Method: The community of practitioners makes little attempt to develop the theory towards solutions of the problems, shows no concern for attempts to evaluate the theory in relation to others, and is selective in considering confirmations and disconfirmations.

      Note that the first criteria requires long periods of time.

      Certainly, in reference to this evaluation qst is in a scientific vein. However, according to this criteria a “long period of time” must pass before we can expect it to have secured a place for itself in scientific history.

      Cutting through all of this philosophy of science, I suspect that the answer to your question has a lot to do with the fact that the majority of practicing scientists are not fully aware of the intricacies of theory construction, or the full history of the demarcation problem. Many scientists have communicated with me about the value they see in this theory. Others have found this theory objectionable based on an emotional fear that it might disagree with currently popular agendas. For some reason these individuals try to undermine the credibility of qst by resting on Popper's falsifiability requirement, which I find strange since there are many many ways in which qst can be falsified.

      All in all, however, I believe that the biggest reason qst has not yet taken off to a mainstream platform is that it is new. We simply need to give it more time and keep spreading the word. It may also have a bit of a harder time taking off than we might expect because it was mostly developed during some intense years of research while I was in prison. Nevertheless, I am confident in the self-correcting method of science, and I believe that it will eventually fully evaluate the richness of this theory.

      Just before he passed away, I was in communication with Benoît Mandelbrot, the father of fractals. We discussed the fractal structure of qst and he granted it his blessing to the idea. Mandelbrot was a man that gave the world a new idea, and he gave it to them in a non-traditional way. After professional scientists outright rejected his idea, Mandelbrot continued to develop his insight and share his idea until its practical powers were undenyable. The world at large became familiar with fractals and began to use them in electronic designs, biological calculations, and more. Then and only then, did the research program of formal Mathematics accept the importance of Mandelbrot's ideas. The lesson I take from this is that, if an idea is useful and brings us closer to the truth, it will eventually be heard.

      Thanks for your interest.

      Also, if you want to read more, I'd be happy to email you pre-print pdf copy of the entire book.

      Med vänliga hälsningar,
      Thad

      • Stephen says:

        Thanks Thad, this is immensely illuminating. I have to repeat that I'm really excited by the prospect of this theory. Murray Gell-Mann says that “there is a common experience in theoretical physics: that BEAUTY is often a very succesful criterion for choosing the right theory” and there is no doubt that qst provides an example of a very beautiful explanation of the construct of our universe. I'll definitely be watching to see where this theory takes us in the coming years. I'm sure that we'll hear a lot more from people once your book is published.

        Also, is there any illumination that qst can cast on young's double-slit experiment? If you can't tell already your new theory is making me so curious about so many persisting physics questions and how it might be able to help us understand them.

        • Thad Roberts säger:

          Stephen,
          I've emailed you a pre-print pdf copy of the book. Please let me know if you didn't receive it (its a rather large file). Chapters 12 and 13 should adequately address your question about how qst makes sense of particle/wave duality. I think you'll be delighted to discover the solution it posits. I might add that Bohmian mechanics offers a rather interesting ontological perspective on the whole particle/wave topic. You might be interested in investigating that a bit also. The two perspectives have a lot in common.

          • Stephen says:

            Oh great. I'm excited to dig into it. I'll be sure to let you know if I have further questions

  9. Stefan palmer says:

    I am a student at weber state majoring in sales so needless to say i know nothing about quantum physics. In fact i hadnt even heard of it until i got home late one night and stumbled across you and this sweet website. I have always been fascinated by space and how this world goes round. But i have always assumed that all of that stuff was over my head, but you lay out information that is so complex so simply that a dumb ass sales major can follow what you are teaching. I am not being humble just realistic when i say i will never be able to make the discoveries you have, but i am so thankful you are willing to share your knowledge with me. If we all put our energy into helping each other a long we would be so much better off. Thx for doing just that, and i will keep my eyes open for any updates or discoveries you have made. The only complaint that i have is its 730 am And i have to get up at 9 but i cant get off this damn website to go to sleep because of how fascinating the discoveries that you have made are. Thx again

    • Thad Roberts säger:

      Dear Stefan,
      Its great to hear about your excitement. I believe that everyone can be a part of the amazing quest to uncover the truth and peer behind the veil. We all have what it takes to ask questions and try to make sense of the big mysteries of our time. I see the end goal as desirable, but the journey as the real treasure. Thanks for joining the journey. I look forward to seeing where it takes us. If you are interested in reading a preprint of my book, please email me and I'll forward a pdf to you.
      Thad

  10. Stefan palmer says:

    Thankyou so much my email is stefan.​d.​palmer@​gmail.​com

  11. Ben säger:

    Thad, I find qst theory amazingly elegant and would really like develop a deeper intuition of it. Could you perhaps send me one of those pdf copies?

    bwc7​0​@​email.​vccs.​edu

    Cheers, Ben

  12. jake3_14 says:

    As a language lover, I'm confused by the terms that have origins in x,y,z space applied to non-x,y,z space. How can quanta have inter-space is the notion of space itself is rooted in three dimensions? Similarly, how can quanta move in superspace, when the concept of movement is rooted in three dimensions? Even the concept of resonance is rooted in the 3-D concept of vibration. Doesn't QST (and perhaps, quantum mechanics) need distinct terminology, even when trying to simplify it for the lay public, so that the public doesn't try to apply three-dimensional concepts where they don't apply?

    • Thad Roberts säger:

      Jake, You are certainly correct, distinct terminology is needed here. Our language is well rooted in Euclidean assumptions, but this model is not Euclidean. Throughout the book I try to keep these issues clear, giving distinct names to different kinds of spaces (intraspatial, spatial, and superspatial).

  13. jake3_14 says:

    Typo in the above: ” How can quanta have inter-space *if* the notion of space itself is rooted in three dimensions?

  14. Gary says:

    One major confusion,

    In conversation one we hear how bodies do not exert a force of gravity between each other thereby causing orbits… we learn that this is a fudge of classical thinking.

    We instead learn the very intuitive ideas based on density and the redefinition of what it means to continue following the straight line. That is, that in QST those orbits are not the result of a phantom pulling force but rather the result of 'curved' space causing a straight path to describe a closed loop (or, rather, a closed loop to describe a straight line)

    PROBLEM

    In our universe, orbits decay and objects collide… yet in QST only two straight paths exist. The first would appear to offer an eternal orbit (eternal as no gravitational force is acting) The second would be a direct line towards the centre of density (Climbing the gradient) which, in the absence of a classical gravitational pull, should be as simple as leaving the centre of density (Descending the gradient)

    But, we know that firing a rocket straight up from the earths centre of mass is rather difficult as an 'apparent' pull is felt. Can QST account for this problem of descending the gradient?

    Alternatively, we know that left alone and undisturbed a rocket at apogee will submit to an apparent pulling force and ascend QST's gradient… but the motivating nature does not appear to be accounted for.

    And finally, as mentioned, orbits decay. If one imagines a perfectly circular gradient of density as might be described by a large mass… QST seems to dictate that, in the absence of mans bogus gravity, an orbiting object will orbit indefinitely as nothing is acting upon it to sway it from continuing in its perfectly straight (closed) line (loop)

    I worry (perhaps unfairly) that Thad's QST is fulfilling its aims, but only if the aims are to sell books. It is a legitimate worry with all of the snakeoil currently being peddled … and, whilst I hope this is not the case, it would cheer me up considerably if I didn't 'instinctively' feel so many inconsistencies. In some ways I would feel much better if the scientific community felt inclined to debunk QST – as at least then it would mean that it had possibly touched a nerve.

    I wonder if anyone can shed light on the above QST explanations for the observable effect we dub 'gravity'

    Many thanks,

    -Gary
    Humble Student, The Open University (UK)

    • Thad Roberts säger:

      Dear Gary,
      It remains unclear as to why you presumed that only two straight paths exist. Perhaps this was an artifact of a brief description you encountered instead of the full one. I invite you to read the whole book, and encourage you to be critical of it. Should you find any internal inconsistencies, please point them out. In lieu of that interaction, it may help to note that in a density gradient of space, the straight path for a particular object also depends on the velocity of that object. Two objects approaching a radial density gradient (like the one belonging to the Earth) with identical directions, but different speeds, will follow different paths in response to that gradient. Each path is the straight path for each object. Both sides (and all parts) of each object must interact with the same amount of space. This, of course, is what we observe. Also, it is important to remember that all gradients present play a role. It would be a mistake to oversimplify our example if we mean it to apply to the real world. Of course, often times out of a desire to explain the model simplifications are used – like starting with a region that holds just the earth and another object. Starting with such a simplification does not imply that the model actually thinks the real universe only contains these two objects. For prediction purposes this model is matched perfectly with Einstein's description of spacetime curvature. The primary difference between models is the intuitive import that this one carries with it. That said, it is based on clear and well-defined assumptions, which anyone is free to agree with or disagree with. Disagreeing with the assumptions does not really attack the model, it just steps outside of it and ignores it altogether. To attack the model one must find internal inconsistencies. If you'd like to receive a free copy of the book (as I have offered all along) I'd be happy to hear your thoughts on it. Thank you for your skepticism.

  15. Armen says:

    How would qst explain our asymmetric visible universe in terms of matter and anti-matter?

    • Thad Roberts säger:

      Great question! The answer comes from a property of superfluids. When we rotate a superfluid volume, the bulk of that volume does not start spinning about like a regular fluid would. Instead, the rotational energy we put into the system is absorbed internally as quantum vortices inside the bulk. The direction we rotate that volume will determine the direction of those vortices. The model assumes that the vacuum is a superfluid, and that on a different resolution the entire universe is like a suspended superfluid drop in a higher system. The expectation is that collisions between drops will rarely be head on. Instead, they will impart at least a small amount of rotational energy into each rebounding drop/universe. But, since each is composed of a superfluid, that rotational energy will manifest internally as quantum vortices. As stable metric distortions, these vortices are the analog of fundamental matter particles. So in one universe they will have one direction, and in the other the reverse direction. Additional vortices can be created within the bulk, but they must be created in pairs (matter and antimatter equally). Since the vast majority of vortices are consequent from the last external collision, we have an overwhelmingly majority of vortices that correlate to matter and only a little that correlate with antimatter.
      Thad

  16. brett says:

    please send me a copy of your book. this is good work.

  17. Daniel says:

    Dear Thad,

    First of all: thank you for this enlightening new view on reality. Please send me a copy of your book.
    Deeply impressed with your work, I set out on a quest to find any comments on this by any credible scientific sources. Perhaps my searching skills are failing me, but I am having trouble finding any. At the moment, that is my biggest concern about your theory. The fact that it has been around for years now, and revolutionary as it seems to be, it has not caused a huge stir in the scientific community. Again, perhaps my searching skills have failed me, I hope they have, and if so, please enlighten me once more.

    Either way, I love what you're doing, please keep doing it!

    Med vänliga hälsningar,

    Daniel

    • Thad Roberts säger:

      Try searching for the more general overarching name 'superfluid vacuum theory.' Of course, you'll find that despite the many publications that fall within superfluid vacuum theory, we are a far cry away from seeing a stir in the scientific community. A revolution in thinking requires first that people value thinking. The current situation in the physics community counters that value. Only one interpretation of quantum mechanics is taught in most universities, and it is the interpretation that most discourages thinking – in fact it attempts to actually forbid an interpretation, which is why some have called it “the Copenhagen non-interpretation.” It is even popular now to deny philosophy as a part of science, which reduces science to meaningless technician work. So the revolution we are pushing is less about a specific new interpretation or model of Nature, but one that brings science back to a nobel human endeavor. Your skepticism is more than welcome, it is encouraged. Scientists should not make ultimate claims to truth, but they cannot abandon the quest for truth and call themselves scientists either. Sending you the book now. Please examine it in full and send your critique.

  18. Shane Killeen says:

    Hi Thad

    I have only recently discovered your work when an acquaintance of mind, the writer AA Attanasio, suggested I check out your work and since then I have watched all I can and read through this comment thread with great interest. I have absolutely no scientific background but have pursued a theory for the last 15 years that explains all of these phenomena intuitively as one cogent whole. What I find staggering is how many conclusions are the same and how similar the grand picture is. I dare say that I believe I have something significant to contribute your theory but it would be jumping the gun without having studied your whole document. I tried to find it on Kindle with no luck. Is it possible that I could have a copy of your book as well? It would be deeply appreciated and an expansion on what is already a remarkable affirmation.

  19. Niklas says:

    So, I think I'm following all of this pretty well, except how the quanta create matter as we know it.
    My mind is all over the place, so I apologize if you get lost, haha.
    How do quanta stick together? Is it a stable geometry dependent on factors like temperature, distance, charge, etc? (There are 5 that we know of, right?) Does each quanta have a unique value for each of those? Or react TO those quantities in a field around it? And do these quanta eventually stick together so much that they form, say, a quark? And depending on the geometry they form different quarks? Then those quarks form different geometries into particles? What stops quanta from continuing to get stuck? Constants of nature? How are those defined?

    Second question, kinda:
    How would we explain tossing a ball straight up into the air? The ball travels through a very dense field of quanta, but what pulls it directly back down? The fact that the “bottom” of the ball is bouncing off of quanta more than the “top” of the ball?

    • Thad Roberts säger:

      Hi Niklas,

      These are great questions. I will give short answers here, but I have written up much more detailed explanations on these very topics in my book. If you do not have it please send me an email requesting it and I'll pass it along.

      First let's recall that the quanta are constituents of a superfluid. Superfluids support quantum vortices, which do not dissipate because the superfluid has no internal friction. These stable quantum vortices are the fundamental particles. Quantum vortices only exist in quantized sizes. This gives us a method by which to match up the fundamental particles of mass in Nature. Remember, mass is a distortion in the fabric of space, the vacuum. So the notion of mass is no longer applicable on the scale of the quantum.

      The constants of Nature section in my book should answer all of your questions on this topic. If not, I'd love to hear your questions.

      As for your questions about the ball being tossed straight up. The thing to remember is that the “field” of curved space, or the density gradient of quanta, is not a static thing. In the macroscopic sense its average properties might seem static, but the underlying motions and actions that form it are not. All we have to do is remember that objects that are not under the influence of a “force” will tend to travel straight. The straight path is what we must consider, and the solution is always the path that allows all parts of an object to experience identical amounts of space. If an object is sitting in a density gradient of space, the little motions of the quanta that make up that gradient determine how much space the object experiences. Since there is a non-zero gradient, there is a macroscopically measurable different in the amount of quanta interacting with the “bottom” side versus the “top” side. Which ever side is interacting with space the most determines the direction the object will tend to go. Chapter 9 will describe this in greater detail.

  20. Johannes säger:

    Thad,

    As a futher device for our imagination would you mind stetching, with commentary about density gradients, the jounery of each of a single photon, neutrino and electron from say a super nova explosion till that particle interacts with something.

    It is also a test of the explainatory power of your theroy against current obsevations.

    I love your work and it seems to me as a trained logician that it would make sense to test a theory with minimal assumptions before inventing the current set of ad hoc assumptions for dark matter, dark energy, gravitational force gravitions, etc

    • Thad Roberts säger:

      Hej John,
      As a single photon travels through “empty” space from a super nova until it interacts with something, its path is determined by the vacuum state of the region it is passing through. That state evolves through time, but if we assume empty space, meaning zero curvature, then the largest effect we must be concerned with is the microscopic effects from the different possible arrangements of the quanta (the different allowed configuration states of the vacuum). For large wavelengths of light those differences will be washed completely out by the averaging-over process, but for sufficiently high energy photons (short wavelength) there will be noticeable effects. For example, the scales on which we would call the paths straight will decrease, and more importantly, photons that are extremely high energy will tunnel through the vacuum – meaning that they will go from location A in space to location B without interacting with all the space between those two locations. One testable prediction here is that these high energy photons will exhibit less red shift than lower energy photons from the same sources (or distances). The model specifically explains that red shift is a function of the inelastic collisions between quanta of space, so if the highest energy photons are skipping some of those collisions then they will be less red shifted. The practical difficultly with measuring this effect is that it is only really expected for photons with wavelengths that approach the Planck length (at least within an order of magnitude or a few orders). Nevertheless, the effect is waiting to be measured.

  21. Christian Grieco says:

    Thad,

    Your work is fascinating. It's simplicity is eloquent. Was hoping to learn a great deal more and am hoping to get a copy of your book.

    • Thad Roberts säger:

      Tack. I'm emailing you the book now.

      I have also recently just finished showing (including the math) that a superfluid vacuum automatically explains the electric field and magnetic field as divergence and curl in the flow of the vacuum. I'm starting to edit chapter 20 to include that information, so if you are interested then send me a request for an update before you reach Chapter 20. 😉

  22. Anderson says:

    I'm in love with this idea that reality is 11 dimensional. I would have to ask however that if 1 planck can be thought of as a bubble, what is the measure of the surface of the bubble? Is the circumference still Pi? It seems to me like it would have to be, but I'm concerned that that might be my predisposition to think in a Newtonian way. At such a small scale, are these “bubbles” even spherical? And although it might be impossible, as a thought experiment think of a creature that exists in superspace and is on the surface of a planck bubble, how would that creature experience time? Or would it only experience supertime?
    The more satisfying our answers become the more bizarre our new questions must be.
    Alas, I am only a layman.

    • Thad Roberts säger:

      We treat the bubble as spherical in a time-averaged sense. Nevertheless, the shape of their boundaries are not defined in x, y, z space at all. Instead, they are defined in superspace. And in superspace, yes, the ratio of their circumference to diameter would be π. The hypothetical creature you speak of would not experience time at all, because such a creature would not be made up of space. Instead she would be made up of superspace, and would experience supertime. Chapter 11 of the book goes into more detail on this. Sending it to you now.

  23. Frank säger:

    Hi, thank you for this video. I appreciate how 11D can be visualized in the mind, but it was helpful seeing the drawings as well.
    What is left after the smallest unit of space is divided? If it's no longer space or a planck bit, what is it called?
    Would it no longer be located within the 11 dimensions?
    Are there infinite dimensions?
    May I have a copy of your book?

    • Thad Roberts säger:

      Självklart. I just emailed you a copy of the book. I think you'll find the figures in the book quite helpful. When we talk about less than a Planck length of space, we are not talking about space. Instead, we are referencing intraspatial information. The name is not as important as the properties. In this model, the vacuum is made up of quanta, the quanta are similarly made up of sub-quanta, and those are made up of sub-sub-quanta, and so on. The fractal structure of the model guarantees that the relationships between each of these levels of construction are self-similiar. It is this fact that gives us direct access to the complete picture. The total number of dimensions in the map depends upon your resolution level. The equation is # of dimensions = 3^n + n, where n is your oder of perspective. Treating the vacuum as a continuum is a first order perspective. Quantizing the vacuum is a second order perspective. Quantizing the quanta is a third order perspective and so on. So if you wish to map Nature with infinite resolution, then yes, according to this construction there are infinite dimensions. But a second order resolution can get you a full explanation of the dynamics observed in quantum mechanics and general relativity. The cause of the Big Bang, however, requires at least a third order perspective to resolve. Chapter 11 should make this more clear.

  24. praroop joshi says:

    hey thad…i am a student but i am really interested in these kind of theory , but i have a minute question
    can gravity travel in different dimension ?
    just like they say in BRANES of string theory.
    and is this the reason that the gravity is the weakest among all the fundamental forces?
    and one more thing if we were to live in different dimensions rather that X,Y,Z, what will it consist i mean can time be an spatial co-ordinate?
    wait for your reply.

    • Thad Roberts säger:

      Your question brings us to what is known as the hierarchy problem. Let me respond with an excerpt from Chapter 19 in my book that addresses this topic:

      Despite the fact that particle physicists have devoted decades of intense research to solving the hierarchy problem, the question of how the feebleness of gravity interlocks with the rest of the picture remains a mystery. The standard model of particle physics makes it easy to treat all forces as the result of an interchange of force particles. With regard to the electromagnetic, weak, and strong nuclear forces, all of our experiments have shown an absolutely stunning alignment with this theoretical depiction. This alignment becomes the supporting foundation for an underlying symmetry in Nature because it links the strengths of these forces into a relatively tight range and unifies the source of their origination and the proposed mechanics responsible for them.

      All of this is aesthetically beautiful and pleasing, except for the fact that we have a rather serious upset when we attempt to compute the strength of gravity through the same model. Paradoxically, when we treat gravity like we treat the other forces—as a similar exchange of some kind of force particle—we find that the standard model clusters gravity's expected strength in range with the other known forces. It predicts that the symmetry underlying the other forces should also belong to gravity and it spits out a value for the strength of gravity that is astronomically different from what we observe it to be.

      Comparing gravity's actual strength to the standard model's theoretical prediction of its strength, we end up with a discrepancy that spans sixteen orders of magnitude. This is a serious problem. Such an enormous misalignment suggests that the standard model of particle physics is still missing something big.

      Both of these attempts are trying to treat gravity as though it were fundamentally the same as the other known forces, despite the fact that in the physical world gravity manifests itself as characteristically different. The motivation behind this comes from the desire to uncover deeper symmetries hidden in Nature and to use those symmetries to enhance our grasp of the natural realm. But what if there is a simpler way to unite the four forces? What if they are connected by a different kind of symmetry?

      The assumption that the vacuum is a superfluid could be the key to unification. If every force corresponds to a way in which the natural geometry differs from Euclidean geometry, then gravity can be understood to be unique among those differences because it is the only one that comes into focus macroscopically. That is, gravity is specifically offset from the other three forces because it arises as a small-amplitude collective excitation mode of the non-relativistic background condensate. In other words, it represents how the density of the vacuum slowly changes from one region to another, which necessitates a smooth representation that is only accurate in the low-energy, low-momentum regime.

      To understand why an accurate description of gravity is restricted to the low-energy, low- momentum regime, it is useful to be aware of the fact that fluid mechanics is an emergent consequent of molecular dynamics (within its low-energy, low-momentum limit). In other words, fluid mechanics is not a fundamental descriptor of any of the systems we apply it to. Those systems are actually driven by an underlying microphysics. Fluid mechanics exists only as an emergent approximation of the low-energy and low-momentum regime of the molecular dynamics that drive the system's evolution.

      Likewise, a velocity field (a vector field) and a derivative density field (a scalar field), which the Euler and continuity equations critically depend upon, do not exist on the microscopic level. They are emergent properties that are only resolved on scales larger than the mean free path and the mean free time.

      If the vacuum is a superfluid, whose metric is macroscopically describable by a state vector (a velocity vector field), then the density gradient of that fluid is an emergent approximation of the system instead of a fundamental descriptor. The cohesion of that approximation requires macroscopic scales, and molecular dynamics that are defined within the low-energy, low-momentum regime. Gravity becomes an expectation because, if the vacuum is a superfluid, if it can be modeled as an acoustic metric, then small fluctuations in that superfluid will obey Lorentz symmetry even though the superfluid itself is non- relativistic.

      The assumption of vacuum superfluidity fully reproduces expectations of compressibility (the ability for the metric to curve or warp), while projecting an internal velocity restriction. It also sets up an expectation of acoustic horizons, which turn out to be analogous to event horizons with the notable difference that they allow for certain physical effects to propagate back across the horizon, which might be analogous to, or responsible for, Hawking radiation. Therefore, if the vacuum is a superfluid, then gravity can be viewed as a macroscopic emergent expression, a collective property of the vacuum that supports long-range deformations in the density field. This small-amplitude characteristic is responsible for the feebleness of gravity.

      The strength of a force reflects the degree to which the geometric properties that author it contrast from Euclidean projections. Gravity is the weakest force because it only comes into focus on macroscopic scales, and therefore only slightly deviates from Euclidean expectations. The strong nuclear force, electromagnetism, and the weak nuclear force, are much stronger because they are all authored by geometric characteristics that deviate from Euclidean projections on even microscopic scales.

      Another way to put this is to say that metric distortions that qualify as gravity fields are inherently incapable of directly accessing the degrees of freedom that belong to the underlying molecular dynamics that drive the system. The metric distortion that leads to gravitational phenomena is capable of existing statically—the density gradient it represents is blind to the molecular dynamics that give rise to it—while the strong force, electromagnetism, and the weak force, are strictly sustained dynamically—they explicitly reference the underlying molecular dynamics. The magnitude of gravity (the degree to which this geometric distortion differs from the static Euclidean space) is, therefore, comparatively diluted. This is a consequence of the average-over process that gives rise to its geometry.

      Therefore, in as much as we consider underlying molecular dynamics to be an explanation of fluid mechanics (on low-energy and low-momentum scales), the assumption that the vacuum is a superfluid comes with a natural explanation for why gravity is so feeble compared to the other forces.

      I'll send you the book via email and look forward to further questions/comments.

  25. Lib says:

    I am completely untrained in science and math however I have been reading layman articles and listening to talks for many years. I just want to say i felt great appreciation for Thad and Co for their labors. The field of human intelligence is, I think, one field to which we all contribute. It is outside of time, though the process of human thought appears linear. I am somewhere in the renaissance, I can understand that the world is not flat and that the earth goes around the sun , despite the evidence of my eyes, and as I grasp the complexities of science and the new physics at an incredibly basic level, groping in darkness, I feel such kindness from the mind in this site, and such gratitude to it. How patient with others ! Quite exemplary of the self-organizing, cooperative intelligence at work.(I see it as the evolutionary life-force, once thought of as a Being outside the system). Thanks for helping the field along.

    • Thad Roberts säger:

      Hej Elizabeth,
      Thank you for your support. We are trying to bring science back into the hands of those that have the courage to honestly ask questions, and to free it from the political pressures that have been strangling its potential. In science, it is never appropriate to justify a truth claim based on it being the claim of some “authority”. The logic should speak for itself. More importantly, we are individually responsible for our own participation in the quest for knowledge and wisdom. As you know, we can never be completely confident that the model we have of Nature is correct, what we can do is evaluate how honestly we have challenged every assumption, and rigorously test against all possible options. Our work is meant to be a guide in that process. It follows the thread of a particular model, one that offer immense ontological clarity, but its true aim is to empower each individual with the skills necessary to push our intellectual boundaries. It asks the questions that challenge our very foundations, and it offers insight into how we might rebuild that foundation. Anyone who reads this book will gain the ability to become a powerful part of the conversation.

  26. Jim säger:

    The flickering (or vibration) of particles of space and the averaging out on the large scale, feels kind of like the illusions of movie projectors – a consistent image appears to the eye, but if you inspect it more closely you realize there's far more to the story.

    The one thing that confused me about the model, was the idea of distance being the number of space particles. If that were so, it would seem that our three-dimensions are hoisted on top of the dimension of space-time, or, perhaps, are dependent on – an outgrowth of – space-time.

    • Thad Roberts säger:

      The idea is that the vacuum is itself a fluid, this measures of space measure amounts of that fluid between positions. I'm not sure what you meant by, “dependent on – an outgrowth of – spacetime.”

  27. Gururaj Bhat says:

    Hej,
    I'm a lay person but found your work very interesting. Can you please send a copy of your book?
    Tack
    Gururaj

  28. Sahil says:

    hey I am a student of physics and would love to read your book. Could you please send me a pdf copy

  29. stewart says:

    Thad, will you send me a copy of your book?

    Tack
    stewart

    • Thad Roberts säger:

      The book is now available via Lulu​.com (hardcover full color), Amazon​.com (softcover full color), or through iTunes (iBook). You'll find links to each here.

      http://​www​.ein​steinsin​tu​ition​.com

      If you'd like a signed copy please let me know. If you cannot afford the $14.99 at this time (for the iBook) send me another message and let me know.

  30. Gene says:

    Hi – thanks for your work. I am a mathematician, and have done some work in higher dimensional geometry, but have little training in physics, and am not a scientist. I have a few questions.

    It seems you are proposing that the quanta are arranged within 3-dimensional space, and that the other 6 dimensions are somehow “within” the three (what I think you call superspace). Is that correct?

    If quanta 1 and 2 are separated by one plankton, and quanta 2 and three are separated by one plankton in a different dimension perpendicular to the first, would the distance between quanta 1 and 3 also be one plankton? In Euclidean geometry it would be the square root of 2. Am I totally off here?

    I assume that your model rejects the theory that the extra 6 dimensions are “curled up” in tiny amounts of curved dimensions around each quanta?

    Forgive me if these questions do not make sense. I appreciate your work and am looking to understand more. Tack.

    • Thad Roberts säger:

      Hi Gene,
      That's partially correct. The quanta of space collectively form the x, y, z vacuum of space that we are familiar with. This means that the arrangements of all the quanta at one instant defines the state of space for that instant, but that connectivity is not static. It evolves according to the wave equation as the quanta mix about. In your specific example, if quanta A and B are separated by one Planck length, then that means that one quantum of space lies between them. If B and C are perpendicularly arranged from A and B, and were also one quantum apart then they also only have one quantum between them. This is not a static condition. At some instances the state of space might find A and B two quanta apart, while others might find them with now quanta of space between them. At any rate, the number of quanta (the amount of space) between A and C would be a whole number (0, 1, 2, 3…) at any particular instant, but would average out to have a value equal to the square root of 2. Does that make sense? So, yes, at any particular moment the spatial separation between A and C might be one quantum of space, and an no point in time would it be the square root of 2, yet the average separation would eventually become the square root of 2.

      If you're interested in getting the book, it is now available via Lulu​.com (hardcover full color), Amazon​.com (softcover full color), or through iTunes (iBook). You'll find links to each here.

      http://​www​.ein​steinsin​tu​ition​.com

      If you'd like a signed copy please let me know. If you cannot afford the $14.99 at this time (for the iBook) send me another message and let me know.

      • Gene says:

        I have problems with the idea of quanta “mixing about” over time. It implies that each quanta is identifiable, and moves from location to location albeit in a “jumpy” fashion. But quanta are the definition of location, from what I understand. Does not “mixing about” imply another frame of reference to “locate” each quanta within 3D space?

        • Thad Roberts säger:

          Yes, absolutely. The quanta are positioned in configuration space, otherwise called superspace. The collection of these quanta fill out the dimensions of x, y, z or familiar space. When there are more than 3 spatial dimensions “location” become a more complex concept.

  31. Artax says:

    Hello Thad,
    I'm very happy because i discover you, i'd always thought “the problem is geometrical”, and so is the solution!
    I would be very grateful if you would send me your book,hopefully I will return the favor in the near future :)
    Tack
    Bye

    • Thad Roberts säger:

      You can order the iBook, softcover or hardcover through this site. If you cannot afford either of these options let me know and I can send you a promo code for a free iBook.

  32. ez Rico says:

    Re: Nunya Bizness … You may be very smart but what comes across is that you are surely full of yourself!! Being crude and rude in your commentary is so much like Donald T Rump. … Thad is too nice a person to call you on your poor communication skills.

Lämna ett svar




Om du vill ha en bild att visa med din kommentar, gå och hämta en Gravatar.